Step |
Hyp |
Ref |
Expression |
1 |
|
pwxpndom2 |
⊢ ( ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) |
2 |
|
reldom |
⊢ Rel ≼ |
3 |
2
|
brrelex2i |
⊢ ( ω ≼ 𝐴 → 𝐴 ∈ V ) |
4 |
3 3
|
xpexd |
⊢ ( ω ≼ 𝐴 → ( 𝐴 × 𝐴 ) ∈ V ) |
5 |
|
djudoml |
⊢ ( ( ( 𝐴 × 𝐴 ) ∈ V ∧ 𝐴 ∈ V ) → ( 𝐴 × 𝐴 ) ≼ ( ( 𝐴 × 𝐴 ) ⊔ 𝐴 ) ) |
6 |
4 3 5
|
syl2anc |
⊢ ( ω ≼ 𝐴 → ( 𝐴 × 𝐴 ) ≼ ( ( 𝐴 × 𝐴 ) ⊔ 𝐴 ) ) |
7 |
|
djucomen |
⊢ ( ( ( 𝐴 × 𝐴 ) ∈ V ∧ 𝐴 ∈ V ) → ( ( 𝐴 × 𝐴 ) ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) |
8 |
4 3 7
|
syl2anc |
⊢ ( ω ≼ 𝐴 → ( ( 𝐴 × 𝐴 ) ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) |
9 |
|
domentr |
⊢ ( ( ( 𝐴 × 𝐴 ) ≼ ( ( 𝐴 × 𝐴 ) ⊔ 𝐴 ) ∧ ( ( 𝐴 × 𝐴 ) ⊔ 𝐴 ) ≈ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) → ( 𝐴 × 𝐴 ) ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) |
10 |
6 8 9
|
syl2anc |
⊢ ( ω ≼ 𝐴 → ( 𝐴 × 𝐴 ) ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) |
11 |
|
domtr |
⊢ ( ( 𝒫 𝐴 ≼ ( 𝐴 × 𝐴 ) ∧ ( 𝐴 × 𝐴 ) ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) → 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) |
12 |
11
|
expcom |
⊢ ( ( 𝐴 × 𝐴 ) ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) → ( 𝒫 𝐴 ≼ ( 𝐴 × 𝐴 ) → 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) ) |
13 |
10 12
|
syl |
⊢ ( ω ≼ 𝐴 → ( 𝒫 𝐴 ≼ ( 𝐴 × 𝐴 ) → 𝒫 𝐴 ≼ ( 𝐴 ⊔ ( 𝐴 × 𝐴 ) ) ) ) |
14 |
1 13
|
mtod |
⊢ ( ω ≼ 𝐴 → ¬ 𝒫 𝐴 ≼ ( 𝐴 × 𝐴 ) ) |