| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pwfseq | ⊢ ( ω  ≼  𝐴  →  ¬  𝒫  𝐴  ≼  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) ) | 
						
							| 2 |  | reldom | ⊢ Rel   ≼ | 
						
							| 3 | 2 | brrelex2i | ⊢ ( ω  ≼  𝐴  →  𝐴  ∈  V ) | 
						
							| 4 |  | df1o2 | ⊢ 1o  =  { ∅ } | 
						
							| 5 | 4 | oveq2i | ⊢ ( 𝐴  ↑m  1o )  =  ( 𝐴  ↑m  { ∅ } ) | 
						
							| 6 |  | id | ⊢ ( 𝐴  ∈  V  →  𝐴  ∈  V ) | 
						
							| 7 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 8 | 7 | a1i | ⊢ ( 𝐴  ∈  V  →  ∅  ∈  V ) | 
						
							| 9 | 6 8 | mapsnend | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ↑m  { ∅ } )  ≈  𝐴 ) | 
						
							| 10 | 5 9 | eqbrtrid | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ↑m  1o )  ≈  𝐴 ) | 
						
							| 11 |  | ensym | ⊢ ( ( 𝐴  ↑m  1o )  ≈  𝐴  →  𝐴  ≈  ( 𝐴  ↑m  1o ) ) | 
						
							| 12 | 3 10 11 | 3syl | ⊢ ( ω  ≼  𝐴  →  𝐴  ≈  ( 𝐴  ↑m  1o ) ) | 
						
							| 13 |  | map2xp | ⊢ ( 𝐴  ∈  V  →  ( 𝐴  ↑m  2o )  ≈  ( 𝐴  ×  𝐴 ) ) | 
						
							| 14 |  | ensym | ⊢ ( ( 𝐴  ↑m  2o )  ≈  ( 𝐴  ×  𝐴 )  →  ( 𝐴  ×  𝐴 )  ≈  ( 𝐴  ↑m  2o ) ) | 
						
							| 15 | 3 13 14 | 3syl | ⊢ ( ω  ≼  𝐴  →  ( 𝐴  ×  𝐴 )  ≈  ( 𝐴  ↑m  2o ) ) | 
						
							| 16 |  | elmapi | ⊢ ( 𝑥  ∈  ( 𝐴  ↑m  1o )  →  𝑥 : 1o ⟶ 𝐴 ) | 
						
							| 17 | 16 | fdmd | ⊢ ( 𝑥  ∈  ( 𝐴  ↑m  1o )  →  dom  𝑥  =  1o ) | 
						
							| 18 | 17 | adantr | ⊢ ( ( 𝑥  ∈  ( 𝐴  ↑m  1o )  ∧  𝑥  ∈  ( 𝐴  ↑m  2o ) )  →  dom  𝑥  =  1o ) | 
						
							| 19 |  | 1oex | ⊢ 1o  ∈  V | 
						
							| 20 | 19 | sucid | ⊢ 1o  ∈  suc  1o | 
						
							| 21 |  | df-2o | ⊢ 2o  =  suc  1o | 
						
							| 22 | 20 21 | eleqtrri | ⊢ 1o  ∈  2o | 
						
							| 23 |  | 1on | ⊢ 1o  ∈  On | 
						
							| 24 | 23 | onirri | ⊢ ¬  1o  ∈  1o | 
						
							| 25 |  | nelneq2 | ⊢ ( ( 1o  ∈  2o  ∧  ¬  1o  ∈  1o )  →  ¬  2o  =  1o ) | 
						
							| 26 | 22 24 25 | mp2an | ⊢ ¬  2o  =  1o | 
						
							| 27 |  | elmapi | ⊢ ( 𝑥  ∈  ( 𝐴  ↑m  2o )  →  𝑥 : 2o ⟶ 𝐴 ) | 
						
							| 28 | 27 | fdmd | ⊢ ( 𝑥  ∈  ( 𝐴  ↑m  2o )  →  dom  𝑥  =  2o ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( 𝑥  ∈  ( 𝐴  ↑m  1o )  ∧  𝑥  ∈  ( 𝐴  ↑m  2o ) )  →  dom  𝑥  =  2o ) | 
						
							| 30 | 29 | eqeq1d | ⊢ ( ( 𝑥  ∈  ( 𝐴  ↑m  1o )  ∧  𝑥  ∈  ( 𝐴  ↑m  2o ) )  →  ( dom  𝑥  =  1o  ↔  2o  =  1o ) ) | 
						
							| 31 | 26 30 | mtbiri | ⊢ ( ( 𝑥  ∈  ( 𝐴  ↑m  1o )  ∧  𝑥  ∈  ( 𝐴  ↑m  2o ) )  →  ¬  dom  𝑥  =  1o ) | 
						
							| 32 | 18 31 | pm2.65i | ⊢ ¬  ( 𝑥  ∈  ( 𝐴  ↑m  1o )  ∧  𝑥  ∈  ( 𝐴  ↑m  2o ) ) | 
						
							| 33 |  | elin | ⊢ ( 𝑥  ∈  ( ( 𝐴  ↑m  1o )  ∩  ( 𝐴  ↑m  2o ) )  ↔  ( 𝑥  ∈  ( 𝐴  ↑m  1o )  ∧  𝑥  ∈  ( 𝐴  ↑m  2o ) ) ) | 
						
							| 34 | 32 33 | mtbir | ⊢ ¬  𝑥  ∈  ( ( 𝐴  ↑m  1o )  ∩  ( 𝐴  ↑m  2o ) ) | 
						
							| 35 | 34 | a1i | ⊢ ( ω  ≼  𝐴  →  ¬  𝑥  ∈  ( ( 𝐴  ↑m  1o )  ∩  ( 𝐴  ↑m  2o ) ) ) | 
						
							| 36 | 35 | eq0rdv | ⊢ ( ω  ≼  𝐴  →  ( ( 𝐴  ↑m  1o )  ∩  ( 𝐴  ↑m  2o ) )  =  ∅ ) | 
						
							| 37 |  | djuenun | ⊢ ( ( 𝐴  ≈  ( 𝐴  ↑m  1o )  ∧  ( 𝐴  ×  𝐴 )  ≈  ( 𝐴  ↑m  2o )  ∧  ( ( 𝐴  ↑m  1o )  ∩  ( 𝐴  ↑m  2o ) )  =  ∅ )  →  ( 𝐴  ⊔  ( 𝐴  ×  𝐴 ) )  ≈  ( ( 𝐴  ↑m  1o )  ∪  ( 𝐴  ↑m  2o ) ) ) | 
						
							| 38 | 12 15 36 37 | syl3anc | ⊢ ( ω  ≼  𝐴  →  ( 𝐴  ⊔  ( 𝐴  ×  𝐴 ) )  ≈  ( ( 𝐴  ↑m  1o )  ∪  ( 𝐴  ↑m  2o ) ) ) | 
						
							| 39 |  | omex | ⊢ ω  ∈  V | 
						
							| 40 |  | ovex | ⊢ ( 𝐴  ↑m  𝑛 )  ∈  V | 
						
							| 41 | 39 40 | iunex | ⊢ ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ∈  V | 
						
							| 42 |  | 1onn | ⊢ 1o  ∈  ω | 
						
							| 43 |  | oveq2 | ⊢ ( 𝑛  =  1o  →  ( 𝐴  ↑m  𝑛 )  =  ( 𝐴  ↑m  1o ) ) | 
						
							| 44 | 43 | ssiun2s | ⊢ ( 1o  ∈  ω  →  ( 𝐴  ↑m  1o )  ⊆  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) ) | 
						
							| 45 | 42 44 | ax-mp | ⊢ ( 𝐴  ↑m  1o )  ⊆  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) | 
						
							| 46 |  | 2onn | ⊢ 2o  ∈  ω | 
						
							| 47 |  | oveq2 | ⊢ ( 𝑛  =  2o  →  ( 𝐴  ↑m  𝑛 )  =  ( 𝐴  ↑m  2o ) ) | 
						
							| 48 | 47 | ssiun2s | ⊢ ( 2o  ∈  ω  →  ( 𝐴  ↑m  2o )  ⊆  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) ) | 
						
							| 49 | 46 48 | ax-mp | ⊢ ( 𝐴  ↑m  2o )  ⊆  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) | 
						
							| 50 | 45 49 | unssi | ⊢ ( ( 𝐴  ↑m  1o )  ∪  ( 𝐴  ↑m  2o ) )  ⊆  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) | 
						
							| 51 |  | ssdomg | ⊢ ( ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  ∈  V  →  ( ( ( 𝐴  ↑m  1o )  ∪  ( 𝐴  ↑m  2o ) )  ⊆  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  →  ( ( 𝐴  ↑m  1o )  ∪  ( 𝐴  ↑m  2o ) )  ≼  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) ) ) | 
						
							| 52 | 41 50 51 | mp2 | ⊢ ( ( 𝐴  ↑m  1o )  ∪  ( 𝐴  ↑m  2o ) )  ≼  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) | 
						
							| 53 |  | endomtr | ⊢ ( ( ( 𝐴  ⊔  ( 𝐴  ×  𝐴 ) )  ≈  ( ( 𝐴  ↑m  1o )  ∪  ( 𝐴  ↑m  2o ) )  ∧  ( ( 𝐴  ↑m  1o )  ∪  ( 𝐴  ↑m  2o ) )  ≼  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) )  →  ( 𝐴  ⊔  ( 𝐴  ×  𝐴 ) )  ≼  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) ) | 
						
							| 54 | 38 52 53 | sylancl | ⊢ ( ω  ≼  𝐴  →  ( 𝐴  ⊔  ( 𝐴  ×  𝐴 ) )  ≼  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) ) | 
						
							| 55 |  | domtr | ⊢ ( ( 𝒫  𝐴  ≼  ( 𝐴  ⊔  ( 𝐴  ×  𝐴 ) )  ∧  ( 𝐴  ⊔  ( 𝐴  ×  𝐴 ) )  ≼  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) )  →  𝒫  𝐴  ≼  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) ) | 
						
							| 56 | 55 | expcom | ⊢ ( ( 𝐴  ⊔  ( 𝐴  ×  𝐴 ) )  ≼  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 )  →  ( 𝒫  𝐴  ≼  ( 𝐴  ⊔  ( 𝐴  ×  𝐴 ) )  →  𝒫  𝐴  ≼  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) ) ) | 
						
							| 57 | 54 56 | syl | ⊢ ( ω  ≼  𝐴  →  ( 𝒫  𝐴  ≼  ( 𝐴  ⊔  ( 𝐴  ×  𝐴 ) )  →  𝒫  𝐴  ≼  ∪  𝑛  ∈  ω ( 𝐴  ↑m  𝑛 ) ) ) | 
						
							| 58 | 1 57 | mtod | ⊢ ( ω  ≼  𝐴  →  ¬  𝒫  𝐴  ≼  ( 𝐴  ⊔  ( 𝐴  ×  𝐴 ) ) ) |