Step |
Hyp |
Ref |
Expression |
1 |
|
lawcos.1 |
⊢ 𝐹 = ( 𝑥 ∈ ( ℂ ∖ { 0 } ) , 𝑦 ∈ ( ℂ ∖ { 0 } ) ↦ ( ℑ ‘ ( log ‘ ( 𝑦 / 𝑥 ) ) ) ) |
2 |
|
lawcos.2 |
⊢ 𝑋 = ( abs ‘ ( 𝐵 − 𝐶 ) ) |
3 |
|
lawcos.3 |
⊢ 𝑌 = ( abs ‘ ( 𝐴 − 𝐶 ) ) |
4 |
|
lawcos.4 |
⊢ 𝑍 = ( abs ‘ ( 𝐴 − 𝐵 ) ) |
5 |
|
lawcos.5 |
⊢ 𝑂 = ( ( 𝐵 − 𝐶 ) 𝐹 ( 𝐴 − 𝐶 ) ) |
6 |
1 2 3 4 5
|
lawcos |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ) → ( 𝑍 ↑ 2 ) = ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) − ( 2 · ( ( 𝑋 · 𝑌 ) · ( cos ‘ 𝑂 ) ) ) ) ) |
7 |
6
|
3adant3 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑂 ∈ { ( π / 2 ) , - ( π / 2 ) } ) → ( 𝑍 ↑ 2 ) = ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) − ( 2 · ( ( 𝑋 · 𝑌 ) · ( cos ‘ 𝑂 ) ) ) ) ) |
8 |
|
elpri |
⊢ ( 𝑂 ∈ { ( π / 2 ) , - ( π / 2 ) } → ( 𝑂 = ( π / 2 ) ∨ 𝑂 = - ( π / 2 ) ) ) |
9 |
|
fveq2 |
⊢ ( 𝑂 = ( π / 2 ) → ( cos ‘ 𝑂 ) = ( cos ‘ ( π / 2 ) ) ) |
10 |
|
coshalfpi |
⊢ ( cos ‘ ( π / 2 ) ) = 0 |
11 |
9 10
|
eqtrdi |
⊢ ( 𝑂 = ( π / 2 ) → ( cos ‘ 𝑂 ) = 0 ) |
12 |
|
fveq2 |
⊢ ( 𝑂 = - ( π / 2 ) → ( cos ‘ 𝑂 ) = ( cos ‘ - ( π / 2 ) ) ) |
13 |
|
cosneghalfpi |
⊢ ( cos ‘ - ( π / 2 ) ) = 0 |
14 |
12 13
|
eqtrdi |
⊢ ( 𝑂 = - ( π / 2 ) → ( cos ‘ 𝑂 ) = 0 ) |
15 |
11 14
|
jaoi |
⊢ ( ( 𝑂 = ( π / 2 ) ∨ 𝑂 = - ( π / 2 ) ) → ( cos ‘ 𝑂 ) = 0 ) |
16 |
8 15
|
syl |
⊢ ( 𝑂 ∈ { ( π / 2 ) , - ( π / 2 ) } → ( cos ‘ 𝑂 ) = 0 ) |
17 |
16
|
3ad2ant3 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑂 ∈ { ( π / 2 ) , - ( π / 2 ) } ) → ( cos ‘ 𝑂 ) = 0 ) |
18 |
17
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑂 ∈ { ( π / 2 ) , - ( π / 2 ) } ) → ( ( 𝑋 · 𝑌 ) · ( cos ‘ 𝑂 ) ) = ( ( 𝑋 · 𝑌 ) · 0 ) ) |
19 |
|
subcl |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
20 |
19
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
21 |
20
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑂 ∈ { ( π / 2 ) , - ( π / 2 ) } ) → ( 𝐵 − 𝐶 ) ∈ ℂ ) |
22 |
21
|
abscld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑂 ∈ { ( π / 2 ) , - ( π / 2 ) } ) → ( abs ‘ ( 𝐵 − 𝐶 ) ) ∈ ℝ ) |
23 |
22
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑂 ∈ { ( π / 2 ) , - ( π / 2 ) } ) → ( abs ‘ ( 𝐵 − 𝐶 ) ) ∈ ℂ ) |
24 |
2 23
|
eqeltrid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑂 ∈ { ( π / 2 ) , - ( π / 2 ) } ) → 𝑋 ∈ ℂ ) |
25 |
|
subcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − 𝐶 ) ∈ ℂ ) |
26 |
25
|
3adant2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) → ( 𝐴 − 𝐶 ) ∈ ℂ ) |
27 |
26
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑂 ∈ { ( π / 2 ) , - ( π / 2 ) } ) → ( 𝐴 − 𝐶 ) ∈ ℂ ) |
28 |
27
|
abscld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑂 ∈ { ( π / 2 ) , - ( π / 2 ) } ) → ( abs ‘ ( 𝐴 − 𝐶 ) ) ∈ ℝ ) |
29 |
28
|
recnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑂 ∈ { ( π / 2 ) , - ( π / 2 ) } ) → ( abs ‘ ( 𝐴 − 𝐶 ) ) ∈ ℂ ) |
30 |
3 29
|
eqeltrid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑂 ∈ { ( π / 2 ) , - ( π / 2 ) } ) → 𝑌 ∈ ℂ ) |
31 |
24 30
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑂 ∈ { ( π / 2 ) , - ( π / 2 ) } ) → ( 𝑋 · 𝑌 ) ∈ ℂ ) |
32 |
31
|
mul01d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑂 ∈ { ( π / 2 ) , - ( π / 2 ) } ) → ( ( 𝑋 · 𝑌 ) · 0 ) = 0 ) |
33 |
18 32
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑂 ∈ { ( π / 2 ) , - ( π / 2 ) } ) → ( ( 𝑋 · 𝑌 ) · ( cos ‘ 𝑂 ) ) = 0 ) |
34 |
33
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑂 ∈ { ( π / 2 ) , - ( π / 2 ) } ) → ( 2 · ( ( 𝑋 · 𝑌 ) · ( cos ‘ 𝑂 ) ) ) = ( 2 · 0 ) ) |
35 |
|
2t0e0 |
⊢ ( 2 · 0 ) = 0 |
36 |
34 35
|
eqtrdi |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑂 ∈ { ( π / 2 ) , - ( π / 2 ) } ) → ( 2 · ( ( 𝑋 · 𝑌 ) · ( cos ‘ 𝑂 ) ) ) = 0 ) |
37 |
36
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑂 ∈ { ( π / 2 ) , - ( π / 2 ) } ) → ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) − ( 2 · ( ( 𝑋 · 𝑌 ) · ( cos ‘ 𝑂 ) ) ) ) = ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) − 0 ) ) |
38 |
24
|
sqcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑂 ∈ { ( π / 2 ) , - ( π / 2 ) } ) → ( 𝑋 ↑ 2 ) ∈ ℂ ) |
39 |
30
|
sqcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑂 ∈ { ( π / 2 ) , - ( π / 2 ) } ) → ( 𝑌 ↑ 2 ) ∈ ℂ ) |
40 |
38 39
|
addcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑂 ∈ { ( π / 2 ) , - ( π / 2 ) } ) → ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) ∈ ℂ ) |
41 |
40
|
subid1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑂 ∈ { ( π / 2 ) , - ( π / 2 ) } ) → ( ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) − 0 ) = ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) ) |
42 |
7 37 41
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐶 ∈ ℂ ) ∧ ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) ∧ 𝑂 ∈ { ( π / 2 ) , - ( π / 2 ) } ) → ( 𝑍 ↑ 2 ) = ( ( 𝑋 ↑ 2 ) + ( 𝑌 ↑ 2 ) ) ) |