| Step | Hyp | Ref | Expression | 
						
							| 1 |  | nncn | ⊢ ( 𝑛  ∈  ℕ  →  𝑛  ∈  ℂ ) | 
						
							| 2 |  | nncn | ⊢ ( 𝑚  ∈  ℕ  →  𝑚  ∈  ℂ ) | 
						
							| 3 |  | nncn | ⊢ ( 𝑘  ∈  ℕ  →  𝑘  ∈  ℂ ) | 
						
							| 4 |  | sqcl | ⊢ ( 𝑚  ∈  ℂ  →  ( 𝑚 ↑ 2 )  ∈  ℂ ) | 
						
							| 5 | 4 | adantl | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( 𝑚 ↑ 2 )  ∈  ℂ ) | 
						
							| 6 | 5 | sqcld | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( ( 𝑚 ↑ 2 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 7 |  | 2cn | ⊢ 2  ∈  ℂ | 
						
							| 8 |  | sqcl | ⊢ ( 𝑛  ∈  ℂ  →  ( 𝑛 ↑ 2 )  ∈  ℂ ) | 
						
							| 9 |  | mulcl | ⊢ ( ( ( 𝑚 ↑ 2 )  ∈  ℂ  ∧  ( 𝑛 ↑ 2 )  ∈  ℂ )  →  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 10 | 4 8 9 | syl2anr | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 11 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) )  ∈  ℂ )  →  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) )  ∈  ℂ ) | 
						
							| 12 | 7 10 11 | sylancr | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) )  ∈  ℂ ) | 
						
							| 13 | 6 12 | subcld | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( ( ( 𝑚 ↑ 2 ) ↑ 2 )  −  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) )  ∈  ℂ ) | 
						
							| 14 | 8 | adantr | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( 𝑛 ↑ 2 )  ∈  ℂ ) | 
						
							| 15 | 14 | sqcld | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( ( 𝑛 ↑ 2 ) ↑ 2 )  ∈  ℂ ) | 
						
							| 16 |  | mulcl | ⊢ ( ( 𝑚  ∈  ℂ  ∧  𝑛  ∈  ℂ )  →  ( 𝑚  ·  𝑛 )  ∈  ℂ ) | 
						
							| 17 | 16 | ancoms | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( 𝑚  ·  𝑛 )  ∈  ℂ ) | 
						
							| 18 |  | mulcl | ⊢ ( ( 2  ∈  ℂ  ∧  ( 𝑚  ·  𝑛 )  ∈  ℂ )  →  ( 2  ·  ( 𝑚  ·  𝑛 ) )  ∈  ℂ ) | 
						
							| 19 | 7 17 18 | sylancr | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( 2  ·  ( 𝑚  ·  𝑛 ) )  ∈  ℂ ) | 
						
							| 20 | 19 | sqcld | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( ( 2  ·  ( 𝑚  ·  𝑛 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 21 | 13 15 20 | add32d | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 )  −  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) )  +  ( ( 𝑛 ↑ 2 ) ↑ 2 ) )  +  ( ( 2  ·  ( 𝑚  ·  𝑛 ) ) ↑ 2 ) )  =  ( ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 )  −  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) )  +  ( ( 2  ·  ( 𝑚  ·  𝑛 ) ) ↑ 2 ) )  +  ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) ) | 
						
							| 22 | 6 12 20 | subadd23d | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 )  −  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) )  +  ( ( 2  ·  ( 𝑚  ·  𝑛 ) ) ↑ 2 ) )  =  ( ( ( 𝑚 ↑ 2 ) ↑ 2 )  +  ( ( ( 2  ·  ( 𝑚  ·  𝑛 ) ) ↑ 2 )  −  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) ) ) ) | 
						
							| 23 |  | sqmul | ⊢ ( ( 2  ∈  ℂ  ∧  ( 𝑚  ·  𝑛 )  ∈  ℂ )  →  ( ( 2  ·  ( 𝑚  ·  𝑛 ) ) ↑ 2 )  =  ( ( 2 ↑ 2 )  ·  ( ( 𝑚  ·  𝑛 ) ↑ 2 ) ) ) | 
						
							| 24 | 7 17 23 | sylancr | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( ( 2  ·  ( 𝑚  ·  𝑛 ) ) ↑ 2 )  =  ( ( 2 ↑ 2 )  ·  ( ( 𝑚  ·  𝑛 ) ↑ 2 ) ) ) | 
						
							| 25 |  | sq2 | ⊢ ( 2 ↑ 2 )  =  4 | 
						
							| 26 | 25 | a1i | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( 2 ↑ 2 )  =  4 ) | 
						
							| 27 |  | sqmul | ⊢ ( ( 𝑚  ∈  ℂ  ∧  𝑛  ∈  ℂ )  →  ( ( 𝑚  ·  𝑛 ) ↑ 2 )  =  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) | 
						
							| 28 | 27 | ancoms | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( ( 𝑚  ·  𝑛 ) ↑ 2 )  =  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) | 
						
							| 29 | 26 28 | oveq12d | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( ( 2 ↑ 2 )  ·  ( ( 𝑚  ·  𝑛 ) ↑ 2 ) )  =  ( 4  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) ) | 
						
							| 30 | 24 29 | eqtrd | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( ( 2  ·  ( 𝑚  ·  𝑛 ) ) ↑ 2 )  =  ( 4  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) ) | 
						
							| 31 | 30 | oveq1d | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( ( ( 2  ·  ( 𝑚  ·  𝑛 ) ) ↑ 2 )  −  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) )  =  ( ( 4  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) )  −  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) ) ) | 
						
							| 32 |  | 4cn | ⊢ 4  ∈  ℂ | 
						
							| 33 |  | subdir | ⊢ ( ( 4  ∈  ℂ  ∧  2  ∈  ℂ  ∧  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) )  ∈  ℂ )  →  ( ( 4  −  2 )  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) )  =  ( ( 4  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) )  −  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) ) ) | 
						
							| 34 | 32 7 10 33 | mp3an12i | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( ( 4  −  2 )  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) )  =  ( ( 4  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) )  −  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) ) ) | 
						
							| 35 |  | 2p2e4 | ⊢ ( 2  +  2 )  =  4 | 
						
							| 36 | 32 7 7 35 | subaddrii | ⊢ ( 4  −  2 )  =  2 | 
						
							| 37 | 36 | oveq1i | ⊢ ( ( 4  −  2 )  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) )  =  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) | 
						
							| 38 | 34 37 | eqtr3di | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( ( 4  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) )  −  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) )  =  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) ) | 
						
							| 39 | 31 38 | eqtrd | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( ( ( 2  ·  ( 𝑚  ·  𝑛 ) ) ↑ 2 )  −  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) )  =  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) ) | 
						
							| 40 | 39 | oveq2d | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( ( ( 𝑚 ↑ 2 ) ↑ 2 )  +  ( ( ( 2  ·  ( 𝑚  ·  𝑛 ) ) ↑ 2 )  −  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) ) )  =  ( ( ( 𝑚 ↑ 2 ) ↑ 2 )  +  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) ) ) | 
						
							| 41 | 22 40 | eqtrd | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 )  −  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) )  +  ( ( 2  ·  ( 𝑚  ·  𝑛 ) ) ↑ 2 ) )  =  ( ( ( 𝑚 ↑ 2 ) ↑ 2 )  +  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) ) ) | 
						
							| 42 | 41 | oveq1d | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 )  −  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) )  +  ( ( 2  ·  ( 𝑚  ·  𝑛 ) ) ↑ 2 ) )  +  ( ( 𝑛 ↑ 2 ) ↑ 2 ) )  =  ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 )  +  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) )  +  ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) ) | 
						
							| 43 | 21 42 | eqtrd | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 )  −  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) )  +  ( ( 𝑛 ↑ 2 ) ↑ 2 ) )  +  ( ( 2  ·  ( 𝑚  ·  𝑛 ) ) ↑ 2 ) )  =  ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 )  +  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) )  +  ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) ) | 
						
							| 44 |  | binom2sub | ⊢ ( ( ( 𝑚 ↑ 2 )  ∈  ℂ  ∧  ( 𝑛 ↑ 2 )  ∈  ℂ )  →  ( ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) ↑ 2 )  =  ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 )  −  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) )  +  ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) ) | 
						
							| 45 | 4 8 44 | syl2anr | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) ↑ 2 )  =  ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 )  −  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) )  +  ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) ) | 
						
							| 46 | 45 | oveq1d | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( ( ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) ↑ 2 )  +  ( ( 2  ·  ( 𝑚  ·  𝑛 ) ) ↑ 2 ) )  =  ( ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 )  −  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) )  +  ( ( 𝑛 ↑ 2 ) ↑ 2 ) )  +  ( ( 2  ·  ( 𝑚  ·  𝑛 ) ) ↑ 2 ) ) ) | 
						
							| 47 |  | binom2 | ⊢ ( ( ( 𝑚 ↑ 2 )  ∈  ℂ  ∧  ( 𝑛 ↑ 2 )  ∈  ℂ )  →  ( ( ( 𝑚 ↑ 2 )  +  ( 𝑛 ↑ 2 ) ) ↑ 2 )  =  ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 )  +  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) )  +  ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) ) | 
						
							| 48 | 4 8 47 | syl2anr | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( ( ( 𝑚 ↑ 2 )  +  ( 𝑛 ↑ 2 ) ) ↑ 2 )  =  ( ( ( ( 𝑚 ↑ 2 ) ↑ 2 )  +  ( 2  ·  ( ( 𝑚 ↑ 2 )  ·  ( 𝑛 ↑ 2 ) ) ) )  +  ( ( 𝑛 ↑ 2 ) ↑ 2 ) ) ) | 
						
							| 49 | 43 46 48 | 3eqtr4d | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ )  →  ( ( ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) ↑ 2 )  +  ( ( 2  ·  ( 𝑚  ·  𝑛 ) ) ↑ 2 ) )  =  ( ( ( 𝑚 ↑ 2 )  +  ( 𝑛 ↑ 2 ) ) ↑ 2 ) ) | 
						
							| 50 | 49 | 3adant3 | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( ( ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) ↑ 2 )  +  ( ( 2  ·  ( 𝑚  ·  𝑛 ) ) ↑ 2 ) )  =  ( ( ( 𝑚 ↑ 2 )  +  ( 𝑛 ↑ 2 ) ) ↑ 2 ) ) | 
						
							| 51 | 50 | oveq2d | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( ( 𝑘 ↑ 2 )  ·  ( ( ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) ↑ 2 )  +  ( ( 2  ·  ( 𝑚  ·  𝑛 ) ) ↑ 2 ) ) )  =  ( ( 𝑘 ↑ 2 )  ·  ( ( ( 𝑚 ↑ 2 )  +  ( 𝑛 ↑ 2 ) ) ↑ 2 ) ) ) | 
						
							| 52 |  | simp3 | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  𝑘  ∈  ℂ ) | 
						
							| 53 | 4 | 3ad2ant2 | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( 𝑚 ↑ 2 )  ∈  ℂ ) | 
						
							| 54 | 8 | 3ad2ant1 | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( 𝑛 ↑ 2 )  ∈  ℂ ) | 
						
							| 55 | 53 54 | subcld | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 56 | 52 55 | sqmuld | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) ) ↑ 2 )  =  ( ( 𝑘 ↑ 2 )  ·  ( ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) ↑ 2 ) ) ) | 
						
							| 57 | 17 | 3adant3 | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( 𝑚  ·  𝑛 )  ∈  ℂ ) | 
						
							| 58 | 7 57 18 | sylancr | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( 2  ·  ( 𝑚  ·  𝑛 ) )  ∈  ℂ ) | 
						
							| 59 | 52 58 | sqmuld | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( ( 𝑘  ·  ( 2  ·  ( 𝑚  ·  𝑛 ) ) ) ↑ 2 )  =  ( ( 𝑘 ↑ 2 )  ·  ( ( 2  ·  ( 𝑚  ·  𝑛 ) ) ↑ 2 ) ) ) | 
						
							| 60 | 56 59 | oveq12d | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( ( ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) ) ↑ 2 )  +  ( ( 𝑘  ·  ( 2  ·  ( 𝑚  ·  𝑛 ) ) ) ↑ 2 ) )  =  ( ( ( 𝑘 ↑ 2 )  ·  ( ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) ↑ 2 ) )  +  ( ( 𝑘 ↑ 2 )  ·  ( ( 2  ·  ( 𝑚  ·  𝑛 ) ) ↑ 2 ) ) ) ) | 
						
							| 61 |  | sqcl | ⊢ ( 𝑘  ∈  ℂ  →  ( 𝑘 ↑ 2 )  ∈  ℂ ) | 
						
							| 62 | 61 | 3ad2ant3 | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( 𝑘 ↑ 2 )  ∈  ℂ ) | 
						
							| 63 | 55 | sqcld | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 64 | 58 | sqcld | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( ( 2  ·  ( 𝑚  ·  𝑛 ) ) ↑ 2 )  ∈  ℂ ) | 
						
							| 65 | 62 63 64 | adddid | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( ( 𝑘 ↑ 2 )  ·  ( ( ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) ↑ 2 )  +  ( ( 2  ·  ( 𝑚  ·  𝑛 ) ) ↑ 2 ) ) )  =  ( ( ( 𝑘 ↑ 2 )  ·  ( ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) ↑ 2 ) )  +  ( ( 𝑘 ↑ 2 )  ·  ( ( 2  ·  ( 𝑚  ·  𝑛 ) ) ↑ 2 ) ) ) ) | 
						
							| 66 | 60 65 | eqtr4d | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( ( ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) ) ↑ 2 )  +  ( ( 𝑘  ·  ( 2  ·  ( 𝑚  ·  𝑛 ) ) ) ↑ 2 ) )  =  ( ( 𝑘 ↑ 2 )  ·  ( ( ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) ↑ 2 )  +  ( ( 2  ·  ( 𝑚  ·  𝑛 ) ) ↑ 2 ) ) ) ) | 
						
							| 67 | 53 54 | addcld | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( ( 𝑚 ↑ 2 )  +  ( 𝑛 ↑ 2 ) )  ∈  ℂ ) | 
						
							| 68 | 52 67 | sqmuld | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  +  ( 𝑛 ↑ 2 ) ) ) ↑ 2 )  =  ( ( 𝑘 ↑ 2 )  ·  ( ( ( 𝑚 ↑ 2 )  +  ( 𝑛 ↑ 2 ) ) ↑ 2 ) ) ) | 
						
							| 69 | 51 66 68 | 3eqtr4d | ⊢ ( ( 𝑛  ∈  ℂ  ∧  𝑚  ∈  ℂ  ∧  𝑘  ∈  ℂ )  →  ( ( ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) ) ↑ 2 )  +  ( ( 𝑘  ·  ( 2  ·  ( 𝑚  ·  𝑛 ) ) ) ↑ 2 ) )  =  ( ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  +  ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) ) | 
						
							| 70 | 1 2 3 69 | syl3an | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑚  ∈  ℕ  ∧  𝑘  ∈  ℕ )  →  ( ( ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) ) ↑ 2 )  +  ( ( 𝑘  ·  ( 2  ·  ( 𝑚  ·  𝑛 ) ) ) ↑ 2 ) )  =  ( ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  +  ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) ) | 
						
							| 71 |  | oveq1 | ⊢ ( 𝐴  =  ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) )  →  ( 𝐴 ↑ 2 )  =  ( ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) ) | 
						
							| 72 |  | oveq1 | ⊢ ( 𝐵  =  ( 𝑘  ·  ( 2  ·  ( 𝑚  ·  𝑛 ) ) )  →  ( 𝐵 ↑ 2 )  =  ( ( 𝑘  ·  ( 2  ·  ( 𝑚  ·  𝑛 ) ) ) ↑ 2 ) ) | 
						
							| 73 | 71 72 | oveqan12d | ⊢ ( ( 𝐴  =  ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) )  ∧  𝐵  =  ( 𝑘  ·  ( 2  ·  ( 𝑚  ·  𝑛 ) ) ) )  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( ( ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) ) ↑ 2 )  +  ( ( 𝑘  ·  ( 2  ·  ( 𝑚  ·  𝑛 ) ) ) ↑ 2 ) ) ) | 
						
							| 74 | 73 | 3adant3 | ⊢ ( ( 𝐴  =  ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) )  ∧  𝐵  =  ( 𝑘  ·  ( 2  ·  ( 𝑚  ·  𝑛 ) ) )  ∧  𝐶  =  ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  +  ( 𝑛 ↑ 2 ) ) ) )  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( ( ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) ) ↑ 2 )  +  ( ( 𝑘  ·  ( 2  ·  ( 𝑚  ·  𝑛 ) ) ) ↑ 2 ) ) ) | 
						
							| 75 |  | oveq1 | ⊢ ( 𝐶  =  ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  +  ( 𝑛 ↑ 2 ) ) )  →  ( 𝐶 ↑ 2 )  =  ( ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  +  ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) ) | 
						
							| 76 | 75 | 3ad2ant3 | ⊢ ( ( 𝐴  =  ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) )  ∧  𝐵  =  ( 𝑘  ·  ( 2  ·  ( 𝑚  ·  𝑛 ) ) )  ∧  𝐶  =  ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  +  ( 𝑛 ↑ 2 ) ) ) )  →  ( 𝐶 ↑ 2 )  =  ( ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  +  ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) ) | 
						
							| 77 | 74 76 | eqeq12d | ⊢ ( ( 𝐴  =  ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) )  ∧  𝐵  =  ( 𝑘  ·  ( 2  ·  ( 𝑚  ·  𝑛 ) ) )  ∧  𝐶  =  ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  +  ( 𝑛 ↑ 2 ) ) ) )  →  ( ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 )  ↔  ( ( ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) ) ↑ 2 )  +  ( ( 𝑘  ·  ( 2  ·  ( 𝑚  ·  𝑛 ) ) ) ↑ 2 ) )  =  ( ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  +  ( 𝑛 ↑ 2 ) ) ) ↑ 2 ) ) ) | 
						
							| 78 | 70 77 | syl5ibrcom | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑚  ∈  ℕ  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐴  =  ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) )  ∧  𝐵  =  ( 𝑘  ·  ( 2  ·  ( 𝑚  ·  𝑛 ) ) )  ∧  𝐶  =  ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  +  ( 𝑛 ↑ 2 ) ) ) )  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 ) ) ) | 
						
							| 79 | 78 | 3expa | ⊢ ( ( ( 𝑛  ∈  ℕ  ∧  𝑚  ∈  ℕ )  ∧  𝑘  ∈  ℕ )  →  ( ( 𝐴  =  ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) )  ∧  𝐵  =  ( 𝑘  ·  ( 2  ·  ( 𝑚  ·  𝑛 ) ) )  ∧  𝐶  =  ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  +  ( 𝑛 ↑ 2 ) ) ) )  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 ) ) ) | 
						
							| 80 | 79 | rexlimdva | ⊢ ( ( 𝑛  ∈  ℕ  ∧  𝑚  ∈  ℕ )  →  ( ∃ 𝑘  ∈  ℕ ( 𝐴  =  ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) )  ∧  𝐵  =  ( 𝑘  ·  ( 2  ·  ( 𝑚  ·  𝑛 ) ) )  ∧  𝐶  =  ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  +  ( 𝑛 ↑ 2 ) ) ) )  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 ) ) ) | 
						
							| 81 | 80 | rexlimivv | ⊢ ( ∃ 𝑛  ∈  ℕ ∃ 𝑚  ∈  ℕ ∃ 𝑘  ∈  ℕ ( 𝐴  =  ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  −  ( 𝑛 ↑ 2 ) ) )  ∧  𝐵  =  ( 𝑘  ·  ( 2  ·  ( 𝑚  ·  𝑛 ) ) )  ∧  𝐶  =  ( 𝑘  ·  ( ( 𝑚 ↑ 2 )  +  ( 𝑛 ↑ 2 ) ) ) )  →  ( ( 𝐴 ↑ 2 )  +  ( 𝐵 ↑ 2 ) )  =  ( 𝐶 ↑ 2 ) ) |