Step |
Hyp |
Ref |
Expression |
1 |
|
gcdnncl |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
2 |
1
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
3 |
2
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( 𝐴 gcd 𝐵 ) ∈ ℕ ) |
4 |
|
nnz |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) |
5 |
|
nnz |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) |
6 |
|
gcddvds |
⊢ ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
7 |
4 5 6
|
syl2an |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
8 |
7
|
3adant3 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) |
9 |
8
|
simpld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ) |
10 |
2
|
nnzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℤ ) |
11 |
2
|
nnne0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ≠ 0 ) |
12 |
4
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
13 |
|
dvdsval2 |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
14 |
10 11 12 13
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
15 |
9 14
|
mpbid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) |
16 |
|
nnre |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℝ ) |
17 |
16
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐴 ∈ ℝ ) |
18 |
2
|
nnred |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℝ ) |
19 |
|
nngt0 |
⊢ ( 𝐴 ∈ ℕ → 0 < 𝐴 ) |
20 |
19
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 0 < 𝐴 ) |
21 |
2
|
nngt0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 0 < ( 𝐴 gcd 𝐵 ) ) |
22 |
17 18 20 21
|
divgt0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 0 < ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) |
23 |
|
elnnz |
⊢ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ↔ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ∧ 0 < ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) ) |
24 |
15 22 23
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
25 |
24
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
26 |
8
|
simprd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) |
27 |
5
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐵 ∈ ℤ ) |
28 |
|
dvdsval2 |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
29 |
10 11 27 28
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
30 |
26 29
|
mpbid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) |
31 |
|
nnre |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℝ ) |
32 |
31
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐵 ∈ ℝ ) |
33 |
|
nngt0 |
⊢ ( 𝐵 ∈ ℕ → 0 < 𝐵 ) |
34 |
33
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 0 < 𝐵 ) |
35 |
32 18 34 21
|
divgt0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 0 < ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) |
36 |
|
elnnz |
⊢ ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ↔ ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ∧ 0 < ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
37 |
30 35 36
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
38 |
37
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
39 |
|
dvdssq |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ) ) |
40 |
10 12 39
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ↔ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ) ) |
41 |
|
dvdssq |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) ) |
42 |
10 27 41
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ↔ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) ) |
43 |
40 42
|
anbi12d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ↔ ( ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) ) ) |
44 |
8 43
|
mpbid |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) ) |
45 |
2
|
nnsqcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ℕ ) |
46 |
45
|
nnzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ℤ ) |
47 |
|
nnsqcl |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 ↑ 2 ) ∈ ℕ ) |
48 |
47
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 ↑ 2 ) ∈ ℕ ) |
49 |
48
|
nnzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
50 |
|
nnsqcl |
⊢ ( 𝐵 ∈ ℕ → ( 𝐵 ↑ 2 ) ∈ ℕ ) |
51 |
50
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐵 ↑ 2 ) ∈ ℕ ) |
52 |
51
|
nnzd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐵 ↑ 2 ) ∈ ℤ ) |
53 |
|
dvds2add |
⊢ ( ( ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℤ ∧ ( 𝐵 ↑ 2 ) ∈ ℤ ) → ( ( ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) |
54 |
46 49 52 53
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐴 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐵 ↑ 2 ) ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) |
55 |
44 54
|
mpd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
56 |
55
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) |
57 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) |
58 |
56 57
|
breqtrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐶 ↑ 2 ) ) |
59 |
|
nnz |
⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℤ ) |
60 |
59
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐶 ∈ ℤ ) |
61 |
|
dvdssq |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐶 ↔ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐶 ↑ 2 ) ) ) |
62 |
10 60 61
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐶 ↔ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐶 ↑ 2 ) ) ) |
63 |
62
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐶 ↔ ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∥ ( 𝐶 ↑ 2 ) ) ) |
64 |
58 63
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( 𝐴 gcd 𝐵 ) ∥ 𝐶 ) |
65 |
|
dvdsval2 |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ≠ 0 ∧ 𝐶 ∈ ℤ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐶 ↔ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
66 |
10 11 60 65
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐶 ↔ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
67 |
66
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( ( 𝐴 gcd 𝐵 ) ∥ 𝐶 ↔ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) ) |
68 |
64 67
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ) |
69 |
|
nnre |
⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℝ ) |
70 |
69
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐶 ∈ ℝ ) |
71 |
|
nngt0 |
⊢ ( 𝐶 ∈ ℕ → 0 < 𝐶 ) |
72 |
71
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 0 < 𝐶 ) |
73 |
70 18 72 21
|
divgt0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 0 < ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ) |
74 |
73
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → 0 < ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ) |
75 |
|
elnnz |
⊢ ( ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ↔ ( ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ∈ ℤ ∧ 0 < ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ) ) |
76 |
68 74 75
|
sylanbrc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
77 |
76
|
3adant3 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) |
78 |
48
|
nncnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 ↑ 2 ) ∈ ℂ ) |
79 |
51
|
nncnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐵 ↑ 2 ) ∈ ℂ ) |
80 |
45
|
nncnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ∈ ℂ ) |
81 |
45
|
nnne0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ≠ 0 ) |
82 |
78 79 80 81
|
divdird |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ) ) |
83 |
82
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ) ) |
84 |
|
nncn |
⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℂ ) |
85 |
84
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐶 ∈ ℂ ) |
86 |
2
|
nncnd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 gcd 𝐵 ) ∈ ℂ ) |
87 |
85 86 11
|
sqdivd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) = ( ( 𝐶 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ) |
88 |
87
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) = ( ( 𝐶 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ) |
89 |
|
oveq1 |
⊢ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) = ( ( 𝐶 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ) |
90 |
89
|
3ad2ant2 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) = ( ( 𝐶 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ) |
91 |
88 90
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) = ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ) |
92 |
|
nncn |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℂ ) |
93 |
92
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐴 ∈ ℂ ) |
94 |
93 86 11
|
sqdivd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ) |
95 |
|
nncn |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℂ ) |
96 |
95
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐵 ∈ ℂ ) |
97 |
96 86 11
|
sqdivd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) = ( ( 𝐵 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ) |
98 |
94 97
|
oveq12d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) + ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ) ) |
99 |
98
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) + ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) ) = ( ( ( 𝐴 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) + ( ( 𝐵 ↑ 2 ) / ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) ) ) |
100 |
83 91 99
|
3eqtr4rd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) + ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) ) = ( ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) ) |
101 |
|
gcddiv |
⊢ ( ( ( 𝐴 ∈ ℤ ∧ 𝐵 ∈ ℤ ∧ ( 𝐴 gcd 𝐵 ) ∈ ℕ ) ∧ ( ( 𝐴 gcd 𝐵 ) ∥ 𝐴 ∧ ( 𝐴 gcd 𝐵 ) ∥ 𝐵 ) ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
102 |
12 27 2 8 101
|
syl31anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
103 |
86 11
|
dividd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) / ( 𝐴 gcd 𝐵 ) ) = 1 ) |
104 |
102 103
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) |
105 |
104
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ) |
106 |
|
simp3 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) |
107 |
|
pythagtriplem18 |
⊢ ( ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ∧ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ∈ ℕ ) ∧ ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) + ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) ) = ( ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ↑ 2 ) ∧ ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) gcd ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 1 ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) ) → ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = ( 2 · ( 𝑚 · 𝑛 ) ) ∧ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) |
108 |
25 38 77 100 105 106 107
|
syl312anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = ( 2 · ( 𝑚 · 𝑛 ) ) ∧ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) |
109 |
93 86 11
|
divcan2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) · ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) = 𝐴 ) |
110 |
109
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) ) |
111 |
96 86 11
|
divcan2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) · ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = 𝐵 ) |
112 |
111
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ) |
113 |
85 86 11
|
divcan2d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) · ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ) = 𝐶 ) |
114 |
113
|
eqcomd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ) ) |
115 |
110 112 114
|
3jca |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) ∧ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ∧ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ) ) ) |
116 |
115
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) ∧ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ∧ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ) ) ) |
117 |
|
oveq2 |
⊢ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) → ( ( 𝐴 gcd 𝐵 ) · ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ) |
118 |
117
|
eqeq2d |
⊢ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) → ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) ↔ 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ) ) |
119 |
118
|
3ad2ant1 |
⊢ ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = ( 2 · ( 𝑚 · 𝑛 ) ) ∧ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) → ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) ↔ 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ) ) |
120 |
|
oveq2 |
⊢ ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = ( 2 · ( 𝑚 · 𝑛 ) ) → ( ( 𝐴 gcd 𝐵 ) · ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ) |
121 |
120
|
eqeq2d |
⊢ ( ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = ( 2 · ( 𝑚 · 𝑛 ) ) → ( 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ↔ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ) ) |
122 |
121
|
3ad2ant2 |
⊢ ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = ( 2 · ( 𝑚 · 𝑛 ) ) ∧ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) → ( 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ↔ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ) ) |
123 |
|
oveq2 |
⊢ ( ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) → ( ( 𝐴 gcd 𝐵 ) · ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ) = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) |
124 |
123
|
eqeq2d |
⊢ ( ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) → ( 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ) ↔ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) |
125 |
124
|
3ad2ant3 |
⊢ ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = ( 2 · ( 𝑚 · 𝑛 ) ) ∧ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) → ( 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ) ↔ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) |
126 |
119 122 125
|
3anbi123d |
⊢ ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = ( 2 · ( 𝑚 · 𝑛 ) ) ∧ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) → ( ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) ∧ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) ) ∧ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) ) ) ↔ ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) |
127 |
116 126
|
syl5ibcom |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = ( 2 · ( 𝑚 · 𝑛 ) ) ∧ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) → ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) |
128 |
127
|
reximdv |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( ∃ 𝑚 ∈ ℕ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = ( 2 · ( 𝑚 · 𝑛 ) ) ∧ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) → ∃ 𝑚 ∈ ℕ ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) |
129 |
128
|
reximdv |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ∧ ( 𝐵 / ( 𝐴 gcd 𝐵 ) ) = ( 2 · ( 𝑚 · 𝑛 ) ) ∧ ( 𝐶 / ( 𝐴 gcd 𝐵 ) ) = ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) → ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) |
130 |
108 129
|
mpd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) |
131 |
|
oveq1 |
⊢ ( 𝑘 = ( 𝐴 gcd 𝐵 ) → ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ) |
132 |
131
|
eqeq2d |
⊢ ( 𝑘 = ( 𝐴 gcd 𝐵 ) → ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ↔ 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ) ) |
133 |
|
oveq1 |
⊢ ( 𝑘 = ( 𝐴 gcd 𝐵 ) → ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ) |
134 |
133
|
eqeq2d |
⊢ ( 𝑘 = ( 𝐴 gcd 𝐵 ) → ( 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ↔ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ) ) |
135 |
|
oveq1 |
⊢ ( 𝑘 = ( 𝐴 gcd 𝐵 ) → ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) |
136 |
135
|
eqeq2d |
⊢ ( 𝑘 = ( 𝐴 gcd 𝐵 ) → ( 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ↔ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) |
137 |
132 134 136
|
3anbi123d |
⊢ ( 𝑘 = ( 𝐴 gcd 𝐵 ) → ( ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ↔ ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) |
138 |
137
|
2rexbidv |
⊢ ( 𝑘 = ( 𝐴 gcd 𝐵 ) → ( ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ↔ ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) ) |
139 |
138
|
rspcev |
⊢ ( ( ( 𝐴 gcd 𝐵 ) ∈ ℕ ∧ ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( 𝐴 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( ( 𝐴 gcd 𝐵 ) · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( ( 𝐴 gcd 𝐵 ) · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) → ∃ 𝑘 ∈ ℕ ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) |
140 |
3 130 139
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ∃ 𝑘 ∈ ℕ ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) |
141 |
|
rexcom |
⊢ ( ∃ 𝑘 ∈ ℕ ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ↔ ∃ 𝑛 ∈ ℕ ∃ 𝑘 ∈ ℕ ∃ 𝑚 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) |
142 |
|
rexcom |
⊢ ( ∃ 𝑘 ∈ ℕ ∃ 𝑚 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ↔ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) |
143 |
142
|
rexbii |
⊢ ( ∃ 𝑛 ∈ ℕ ∃ 𝑘 ∈ ℕ ∃ 𝑚 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ↔ ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) |
144 |
141 143
|
bitri |
⊢ ( ∃ 𝑘 ∈ ℕ ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ↔ ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) |
145 |
140 144
|
sylib |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ¬ 2 ∥ ( 𝐴 / ( 𝐴 gcd 𝐵 ) ) ) → ∃ 𝑛 ∈ ℕ ∃ 𝑚 ∈ ℕ ∃ 𝑘 ∈ ℕ ( 𝐴 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) − ( 𝑛 ↑ 2 ) ) ) ∧ 𝐵 = ( 𝑘 · ( 2 · ( 𝑚 · 𝑛 ) ) ) ∧ 𝐶 = ( 𝑘 · ( ( 𝑚 ↑ 2 ) + ( 𝑛 ↑ 2 ) ) ) ) ) |