Step |
Hyp |
Ref |
Expression |
1 |
|
oveq2 |
⊢ ( ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) → ( ( 𝐵 ↑ 2 ) gcd ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) = ( ( 𝐵 ↑ 2 ) gcd ( 𝐶 ↑ 2 ) ) ) |
2 |
1
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( ( 𝐵 ↑ 2 ) gcd ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) = ( ( 𝐵 ↑ 2 ) gcd ( 𝐶 ↑ 2 ) ) ) |
3 |
|
nnz |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) |
4 |
|
zsqcl |
⊢ ( 𝐵 ∈ ℤ → ( 𝐵 ↑ 2 ) ∈ ℤ ) |
5 |
3 4
|
syl |
⊢ ( 𝐵 ∈ ℕ → ( 𝐵 ↑ 2 ) ∈ ℤ ) |
6 |
5
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐵 ↑ 2 ) ∈ ℤ ) |
7 |
|
nnz |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) |
8 |
|
zsqcl |
⊢ ( 𝐴 ∈ ℤ → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
9 |
7 8
|
syl |
⊢ ( 𝐴 ∈ ℕ → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
10 |
9
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐴 ↑ 2 ) ∈ ℤ ) |
11 |
|
gcdadd |
⊢ ( ( ( 𝐵 ↑ 2 ) ∈ ℤ ∧ ( 𝐴 ↑ 2 ) ∈ ℤ ) → ( ( 𝐵 ↑ 2 ) gcd ( 𝐴 ↑ 2 ) ) = ( ( 𝐵 ↑ 2 ) gcd ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) |
12 |
6 10 11
|
syl2anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐵 ↑ 2 ) gcd ( 𝐴 ↑ 2 ) ) = ( ( 𝐵 ↑ 2 ) gcd ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) ) |
13 |
6 10
|
gcdcomd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐵 ↑ 2 ) gcd ( 𝐴 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) ) |
14 |
12 13
|
eqtr3d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐵 ↑ 2 ) gcd ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) = ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) ) |
15 |
14
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( ( 𝐵 ↑ 2 ) gcd ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) ) = ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) ) |
16 |
2 15
|
eqtr3d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( ( 𝐵 ↑ 2 ) gcd ( 𝐶 ↑ 2 ) ) = ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) ) |
17 |
|
simpl2 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → 𝐵 ∈ ℕ ) |
18 |
|
simpl3 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → 𝐶 ∈ ℕ ) |
19 |
|
sqgcd |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) = ( ( 𝐵 ↑ 2 ) gcd ( 𝐶 ↑ 2 ) ) ) |
20 |
17 18 19
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) = ( ( 𝐵 ↑ 2 ) gcd ( 𝐶 ↑ 2 ) ) ) |
21 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → 𝐴 ∈ ℕ ) |
22 |
|
sqgcd |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) ) |
23 |
21 17 22
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) = ( ( 𝐴 ↑ 2 ) gcd ( 𝐵 ↑ 2 ) ) ) |
24 |
16 20 23
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ) → ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) = ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) |
25 |
24
|
3adant3 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) = ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) ) |
26 |
|
simp3l |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐴 gcd 𝐵 ) = 1 ) |
27 |
26
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐴 gcd 𝐵 ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
28 |
25 27
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) = ( 1 ↑ 2 ) ) |
29 |
3
|
3ad2ant2 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐵 ∈ ℤ ) |
30 |
|
nnz |
⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℤ ) |
31 |
30
|
3ad2ant3 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐶 ∈ ℤ ) |
32 |
29 31
|
gcdcld |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐵 gcd 𝐶 ) ∈ ℕ0 ) |
33 |
32
|
nn0red |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐵 gcd 𝐶 ) ∈ ℝ ) |
34 |
33
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐵 gcd 𝐶 ) ∈ ℝ ) |
35 |
32
|
nn0ge0d |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 0 ≤ ( 𝐵 gcd 𝐶 ) ) |
36 |
35
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → 0 ≤ ( 𝐵 gcd 𝐶 ) ) |
37 |
|
1re |
⊢ 1 ∈ ℝ |
38 |
|
0le1 |
⊢ 0 ≤ 1 |
39 |
|
sq11 |
⊢ ( ( ( ( 𝐵 gcd 𝐶 ) ∈ ℝ ∧ 0 ≤ ( 𝐵 gcd 𝐶 ) ) ∧ ( 1 ∈ ℝ ∧ 0 ≤ 1 ) ) → ( ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( 𝐵 gcd 𝐶 ) = 1 ) ) |
40 |
37 38 39
|
mpanr12 |
⊢ ( ( ( 𝐵 gcd 𝐶 ) ∈ ℝ ∧ 0 ≤ ( 𝐵 gcd 𝐶 ) ) → ( ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( 𝐵 gcd 𝐶 ) = 1 ) ) |
41 |
34 36 40
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( ( 𝐵 gcd 𝐶 ) ↑ 2 ) = ( 1 ↑ 2 ) ↔ ( 𝐵 gcd 𝐶 ) = 1 ) ) |
42 |
28 41
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( 𝐵 gcd 𝐶 ) = 1 ) |