Step |
Hyp |
Ref |
Expression |
1 |
|
pythagtriplem6 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 − 𝐵 ) ) = ( ( 𝐶 − 𝐵 ) gcd 𝐴 ) ) |
2 |
|
nnz |
⊢ ( 𝐶 ∈ ℕ → 𝐶 ∈ ℤ ) |
3 |
|
nnz |
⊢ ( 𝐵 ∈ ℕ → 𝐵 ∈ ℤ ) |
4 |
|
zsubcl |
⊢ ( ( 𝐶 ∈ ℤ ∧ 𝐵 ∈ ℤ ) → ( 𝐶 − 𝐵 ) ∈ ℤ ) |
5 |
2 3 4
|
syl2anr |
⊢ ( ( 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 − 𝐵 ) ∈ ℤ ) |
6 |
5
|
3adant1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( 𝐶 − 𝐵 ) ∈ ℤ ) |
7 |
|
nnz |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ∈ ℤ ) |
8 |
7
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → 𝐴 ∈ ℤ ) |
9 |
|
nnne0 |
⊢ ( 𝐴 ∈ ℕ → 𝐴 ≠ 0 ) |
10 |
9
|
neneqd |
⊢ ( 𝐴 ∈ ℕ → ¬ 𝐴 = 0 ) |
11 |
10
|
intnand |
⊢ ( 𝐴 ∈ ℕ → ¬ ( ( 𝐶 − 𝐵 ) = 0 ∧ 𝐴 = 0 ) ) |
12 |
11
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ¬ ( ( 𝐶 − 𝐵 ) = 0 ∧ 𝐴 = 0 ) ) |
13 |
|
gcdn0cl |
⊢ ( ( ( ( 𝐶 − 𝐵 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) ∧ ¬ ( ( 𝐶 − 𝐵 ) = 0 ∧ 𝐴 = 0 ) ) → ( ( 𝐶 − 𝐵 ) gcd 𝐴 ) ∈ ℕ ) |
14 |
6 8 12 13
|
syl21anc |
⊢ ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) → ( ( 𝐶 − 𝐵 ) gcd 𝐴 ) ∈ ℕ ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( ( 𝐶 − 𝐵 ) gcd 𝐴 ) ∈ ℕ ) |
16 |
1 15
|
eqeltrd |
⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝐵 ∈ ℕ ∧ 𝐶 ∈ ℕ ) ∧ ( ( 𝐴 ↑ 2 ) + ( 𝐵 ↑ 2 ) ) = ( 𝐶 ↑ 2 ) ∧ ( ( 𝐴 gcd 𝐵 ) = 1 ∧ ¬ 2 ∥ 𝐴 ) ) → ( √ ‘ ( 𝐶 − 𝐵 ) ) ∈ ℕ ) |