Step |
Hyp |
Ref |
Expression |
1 |
|
pyth.1 |
⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) |
2 |
|
pyth.2 |
⊢ 𝐺 = ( +𝑣 ‘ 𝑈 ) |
3 |
|
pyth.6 |
⊢ 𝑁 = ( normCV ‘ 𝑈 ) |
4 |
|
pyth.7 |
⊢ 𝑃 = ( ·𝑖OLD ‘ 𝑈 ) |
5 |
|
pythi.u |
⊢ 𝑈 ∈ CPreHilOLD |
6 |
|
pythi.a |
⊢ 𝐴 ∈ 𝑋 |
7 |
|
pythi.b |
⊢ 𝐵 ∈ 𝑋 |
8 |
1 2 4 5 6 7 6 7
|
ip2dii |
⊢ ( ( 𝐴 𝐺 𝐵 ) 𝑃 ( 𝐴 𝐺 𝐵 ) ) = ( ( ( 𝐴 𝑃 𝐴 ) + ( 𝐵 𝑃 𝐵 ) ) + ( ( 𝐴 𝑃 𝐵 ) + ( 𝐵 𝑃 𝐴 ) ) ) |
9 |
|
id |
⊢ ( ( 𝐴 𝑃 𝐵 ) = 0 → ( 𝐴 𝑃 𝐵 ) = 0 ) |
10 |
5
|
phnvi |
⊢ 𝑈 ∈ NrmCVec |
11 |
1 4
|
diporthcom |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( ( 𝐴 𝑃 𝐵 ) = 0 ↔ ( 𝐵 𝑃 𝐴 ) = 0 ) ) |
12 |
10 6 7 11
|
mp3an |
⊢ ( ( 𝐴 𝑃 𝐵 ) = 0 ↔ ( 𝐵 𝑃 𝐴 ) = 0 ) |
13 |
12
|
biimpi |
⊢ ( ( 𝐴 𝑃 𝐵 ) = 0 → ( 𝐵 𝑃 𝐴 ) = 0 ) |
14 |
9 13
|
oveq12d |
⊢ ( ( 𝐴 𝑃 𝐵 ) = 0 → ( ( 𝐴 𝑃 𝐵 ) + ( 𝐵 𝑃 𝐴 ) ) = ( 0 + 0 ) ) |
15 |
|
00id |
⊢ ( 0 + 0 ) = 0 |
16 |
14 15
|
eqtrdi |
⊢ ( ( 𝐴 𝑃 𝐵 ) = 0 → ( ( 𝐴 𝑃 𝐵 ) + ( 𝐵 𝑃 𝐴 ) ) = 0 ) |
17 |
16
|
oveq2d |
⊢ ( ( 𝐴 𝑃 𝐵 ) = 0 → ( ( ( 𝐴 𝑃 𝐴 ) + ( 𝐵 𝑃 𝐵 ) ) + ( ( 𝐴 𝑃 𝐵 ) + ( 𝐵 𝑃 𝐴 ) ) ) = ( ( ( 𝐴 𝑃 𝐴 ) + ( 𝐵 𝑃 𝐵 ) ) + 0 ) ) |
18 |
1 4
|
dipcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐴 ) ∈ ℂ ) |
19 |
10 6 6 18
|
mp3an |
⊢ ( 𝐴 𝑃 𝐴 ) ∈ ℂ |
20 |
1 4
|
dipcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝑃 𝐵 ) ∈ ℂ ) |
21 |
10 7 7 20
|
mp3an |
⊢ ( 𝐵 𝑃 𝐵 ) ∈ ℂ |
22 |
19 21
|
addcli |
⊢ ( ( 𝐴 𝑃 𝐴 ) + ( 𝐵 𝑃 𝐵 ) ) ∈ ℂ |
23 |
22
|
addid1i |
⊢ ( ( ( 𝐴 𝑃 𝐴 ) + ( 𝐵 𝑃 𝐵 ) ) + 0 ) = ( ( 𝐴 𝑃 𝐴 ) + ( 𝐵 𝑃 𝐵 ) ) |
24 |
17 23
|
eqtrdi |
⊢ ( ( 𝐴 𝑃 𝐵 ) = 0 → ( ( ( 𝐴 𝑃 𝐴 ) + ( 𝐵 𝑃 𝐵 ) ) + ( ( 𝐴 𝑃 𝐵 ) + ( 𝐵 𝑃 𝐴 ) ) ) = ( ( 𝐴 𝑃 𝐴 ) + ( 𝐵 𝑃 𝐵 ) ) ) |
25 |
8 24
|
syl5eq |
⊢ ( ( 𝐴 𝑃 𝐵 ) = 0 → ( ( 𝐴 𝐺 𝐵 ) 𝑃 ( 𝐴 𝐺 𝐵 ) ) = ( ( 𝐴 𝑃 𝐴 ) + ( 𝐵 𝑃 𝐵 ) ) ) |
26 |
1 2
|
nvgcl |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ∧ 𝐵 ∈ 𝑋 ) → ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) |
27 |
10 6 7 26
|
mp3an |
⊢ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 |
28 |
1 3 4
|
ipidsq |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ ( 𝐴 𝐺 𝐵 ) ∈ 𝑋 ) → ( ( 𝐴 𝐺 𝐵 ) 𝑃 ( 𝐴 𝐺 𝐵 ) ) = ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) ) |
29 |
10 27 28
|
mp2an |
⊢ ( ( 𝐴 𝐺 𝐵 ) 𝑃 ( 𝐴 𝐺 𝐵 ) ) = ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) |
30 |
1 3 4
|
ipidsq |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐴 ∈ 𝑋 ) → ( 𝐴 𝑃 𝐴 ) = ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) ) |
31 |
10 6 30
|
mp2an |
⊢ ( 𝐴 𝑃 𝐴 ) = ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) |
32 |
1 3 4
|
ipidsq |
⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝐵 ∈ 𝑋 ) → ( 𝐵 𝑃 𝐵 ) = ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) |
33 |
10 7 32
|
mp2an |
⊢ ( 𝐵 𝑃 𝐵 ) = ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) |
34 |
31 33
|
oveq12i |
⊢ ( ( 𝐴 𝑃 𝐴 ) + ( 𝐵 𝑃 𝐵 ) ) = ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) |
35 |
25 29 34
|
3eqtr3g |
⊢ ( ( 𝐴 𝑃 𝐵 ) = 0 → ( ( 𝑁 ‘ ( 𝐴 𝐺 𝐵 ) ) ↑ 2 ) = ( ( ( 𝑁 ‘ 𝐴 ) ↑ 2 ) + ( ( 𝑁 ‘ 𝐵 ) ↑ 2 ) ) ) |