Step |
Hyp |
Ref |
Expression |
1 |
|
r1padd1.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
r1padd1.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
3 |
|
r1padd1.n |
⊢ 𝑁 = ( Unic1p ‘ 𝑅 ) |
4 |
|
q1pdir.d |
⊢ / = ( quot1p ‘ 𝑅 ) |
5 |
|
q1pdir.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
6 |
|
q1pdir.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
7 |
|
q1pdir.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑁 ) |
8 |
|
q1pdir.b |
⊢ ( 𝜑 → 𝐵 ∈ 𝑈 ) |
9 |
|
q1pdir.1 |
⊢ + = ( +g ‘ 𝑃 ) |
10 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
11 |
5 10
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
12 |
11
|
ringgrpd |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
13 |
2 9 12 6 8
|
grpcld |
⊢ ( 𝜑 → ( 𝐴 + 𝐵 ) ∈ 𝑈 ) |
14 |
4 1 2 3
|
q1pcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑁 ) → ( 𝐴 / 𝐶 ) ∈ 𝑈 ) |
15 |
5 6 7 14
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 / 𝐶 ) ∈ 𝑈 ) |
16 |
4 1 2 3
|
q1pcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐵 ∈ 𝑈 ∧ 𝐶 ∈ 𝑁 ) → ( 𝐵 / 𝐶 ) ∈ 𝑈 ) |
17 |
5 8 7 16
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 / 𝐶 ) ∈ 𝑈 ) |
18 |
2 9 12 15 17
|
grpcld |
⊢ ( 𝜑 → ( ( 𝐴 / 𝐶 ) + ( 𝐵 / 𝐶 ) ) ∈ 𝑈 ) |
19 |
1 2 3
|
uc1pcl |
⊢ ( 𝐶 ∈ 𝑁 → 𝐶 ∈ 𝑈 ) |
20 |
7 19
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) |
21 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
22 |
2 9 21
|
ringdir |
⊢ ( ( 𝑃 ∈ Ring ∧ ( ( 𝐴 / 𝐶 ) ∈ 𝑈 ∧ ( 𝐵 / 𝐶 ) ∈ 𝑈 ∧ 𝐶 ∈ 𝑈 ) ) → ( ( ( 𝐴 / 𝐶 ) + ( 𝐵 / 𝐶 ) ) ( .r ‘ 𝑃 ) 𝐶 ) = ( ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) + ( ( 𝐵 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) |
23 |
11 15 17 20 22
|
syl13anc |
⊢ ( 𝜑 → ( ( ( 𝐴 / 𝐶 ) + ( 𝐵 / 𝐶 ) ) ( .r ‘ 𝑃 ) 𝐶 ) = ( ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) + ( ( 𝐵 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) |
24 |
23
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝑃 ) ( ( ( 𝐴 / 𝐶 ) + ( 𝐵 / 𝐶 ) ) ( .r ‘ 𝑃 ) 𝐶 ) ) = ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝑃 ) ( ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) + ( ( 𝐵 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) ) |
25 |
11
|
ringabld |
⊢ ( 𝜑 → 𝑃 ∈ Abel ) |
26 |
2 21 11 15 20
|
ringcld |
⊢ ( 𝜑 → ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ∈ 𝑈 ) |
27 |
2 21 11 17 20
|
ringcld |
⊢ ( 𝜑 → ( ( 𝐵 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ∈ 𝑈 ) |
28 |
|
eqid |
⊢ ( -g ‘ 𝑃 ) = ( -g ‘ 𝑃 ) |
29 |
2 9 28
|
ablsub4 |
⊢ ( ( 𝑃 ∈ Abel ∧ ( 𝐴 ∈ 𝑈 ∧ 𝐵 ∈ 𝑈 ) ∧ ( ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ∈ 𝑈 ∧ ( ( 𝐵 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ∈ 𝑈 ) ) → ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝑃 ) ( ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) + ( ( 𝐵 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) = ( ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) + ( 𝐵 ( -g ‘ 𝑃 ) ( ( 𝐵 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) ) |
30 |
25 6 8 26 27 29
|
syl122anc |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝑃 ) ( ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) + ( ( 𝐵 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) = ( ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) + ( 𝐵 ( -g ‘ 𝑃 ) ( ( 𝐵 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) ) |
31 |
24 30
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝑃 ) ( ( ( 𝐴 / 𝐶 ) + ( 𝐵 / 𝐶 ) ) ( .r ‘ 𝑃 ) 𝐶 ) ) = ( ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) + ( 𝐵 ( -g ‘ 𝑃 ) ( ( 𝐵 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) ) |
32 |
31
|
fveq2d |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝑅 ) ‘ ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝑃 ) ( ( ( 𝐴 / 𝐶 ) + ( 𝐵 / 𝐶 ) ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) = ( ( deg1 ‘ 𝑅 ) ‘ ( ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) + ( 𝐵 ( -g ‘ 𝑃 ) ( ( 𝐵 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) ) ) |
33 |
|
eqid |
⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ 𝑅 ) |
34 |
|
eqid |
⊢ ( rem1p ‘ 𝑅 ) = ( rem1p ‘ 𝑅 ) |
35 |
34 1 2 4 21 28
|
r1pval |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑈 ) → ( 𝐴 ( rem1p ‘ 𝑅 ) 𝐶 ) = ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) |
36 |
6 20 35
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ( rem1p ‘ 𝑅 ) 𝐶 ) = ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) |
37 |
34 1 2 3
|
r1pcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑁 ) → ( 𝐴 ( rem1p ‘ 𝑅 ) 𝐶 ) ∈ 𝑈 ) |
38 |
5 6 7 37
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ( rem1p ‘ 𝑅 ) 𝐶 ) ∈ 𝑈 ) |
39 |
36 38
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ∈ 𝑈 ) |
40 |
34 1 2 4 21 28
|
r1pval |
⊢ ( ( 𝐵 ∈ 𝑈 ∧ 𝐶 ∈ 𝑈 ) → ( 𝐵 ( rem1p ‘ 𝑅 ) 𝐶 ) = ( 𝐵 ( -g ‘ 𝑃 ) ( ( 𝐵 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) |
41 |
8 20 40
|
syl2anc |
⊢ ( 𝜑 → ( 𝐵 ( rem1p ‘ 𝑅 ) 𝐶 ) = ( 𝐵 ( -g ‘ 𝑃 ) ( ( 𝐵 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) |
42 |
34 1 2 3
|
r1pcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐵 ∈ 𝑈 ∧ 𝐶 ∈ 𝑁 ) → ( 𝐵 ( rem1p ‘ 𝑅 ) 𝐶 ) ∈ 𝑈 ) |
43 |
5 8 7 42
|
syl3anc |
⊢ ( 𝜑 → ( 𝐵 ( rem1p ‘ 𝑅 ) 𝐶 ) ∈ 𝑈 ) |
44 |
41 43
|
eqeltrrd |
⊢ ( 𝜑 → ( 𝐵 ( -g ‘ 𝑃 ) ( ( 𝐵 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ∈ 𝑈 ) |
45 |
33 1 2
|
deg1xrcl |
⊢ ( 𝐶 ∈ 𝑈 → ( ( deg1 ‘ 𝑅 ) ‘ 𝐶 ) ∈ ℝ* ) |
46 |
20 45
|
syl |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝑅 ) ‘ 𝐶 ) ∈ ℝ* ) |
47 |
36
|
fveq2d |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐴 ( rem1p ‘ 𝑅 ) 𝐶 ) ) = ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) ) |
48 |
34 1 2 3 33
|
r1pdeglt |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑁 ) → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐴 ( rem1p ‘ 𝑅 ) 𝐶 ) ) < ( ( deg1 ‘ 𝑅 ) ‘ 𝐶 ) ) |
49 |
5 6 7 48
|
syl3anc |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐴 ( rem1p ‘ 𝑅 ) 𝐶 ) ) < ( ( deg1 ‘ 𝑅 ) ‘ 𝐶 ) ) |
50 |
47 49
|
eqbrtrrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) < ( ( deg1 ‘ 𝑅 ) ‘ 𝐶 ) ) |
51 |
41
|
fveq2d |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐵 ( rem1p ‘ 𝑅 ) 𝐶 ) ) = ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐵 ( -g ‘ 𝑃 ) ( ( 𝐵 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) ) |
52 |
34 1 2 3 33
|
r1pdeglt |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐵 ∈ 𝑈 ∧ 𝐶 ∈ 𝑁 ) → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐵 ( rem1p ‘ 𝑅 ) 𝐶 ) ) < ( ( deg1 ‘ 𝑅 ) ‘ 𝐶 ) ) |
53 |
5 8 7 52
|
syl3anc |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐵 ( rem1p ‘ 𝑅 ) 𝐶 ) ) < ( ( deg1 ‘ 𝑅 ) ‘ 𝐶 ) ) |
54 |
51 53
|
eqbrtrrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐵 ( -g ‘ 𝑃 ) ( ( 𝐵 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) < ( ( deg1 ‘ 𝑅 ) ‘ 𝐶 ) ) |
55 |
1 33 5 2 9 39 44 46 50 54
|
deg1addlt |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝑅 ) ‘ ( ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) + ( 𝐵 ( -g ‘ 𝑃 ) ( ( 𝐵 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) ) < ( ( deg1 ‘ 𝑅 ) ‘ 𝐶 ) ) |
56 |
32 55
|
eqbrtrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝑅 ) ‘ ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝑃 ) ( ( ( 𝐴 / 𝐶 ) + ( 𝐵 / 𝐶 ) ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) < ( ( deg1 ‘ 𝑅 ) ‘ 𝐶 ) ) |
57 |
4 1 2 33 28 21 3
|
q1peqb |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐴 + 𝐵 ) ∈ 𝑈 ∧ 𝐶 ∈ 𝑁 ) → ( ( ( ( 𝐴 / 𝐶 ) + ( 𝐵 / 𝐶 ) ) ∈ 𝑈 ∧ ( ( deg1 ‘ 𝑅 ) ‘ ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝑃 ) ( ( ( 𝐴 / 𝐶 ) + ( 𝐵 / 𝐶 ) ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) < ( ( deg1 ‘ 𝑅 ) ‘ 𝐶 ) ) ↔ ( ( 𝐴 + 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) + ( 𝐵 / 𝐶 ) ) ) ) |
58 |
57
|
biimpa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐴 + 𝐵 ) ∈ 𝑈 ∧ 𝐶 ∈ 𝑁 ) ∧ ( ( ( 𝐴 / 𝐶 ) + ( 𝐵 / 𝐶 ) ) ∈ 𝑈 ∧ ( ( deg1 ‘ 𝑅 ) ‘ ( ( 𝐴 + 𝐵 ) ( -g ‘ 𝑃 ) ( ( ( 𝐴 / 𝐶 ) + ( 𝐵 / 𝐶 ) ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) < ( ( deg1 ‘ 𝑅 ) ‘ 𝐶 ) ) ) → ( ( 𝐴 + 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) + ( 𝐵 / 𝐶 ) ) ) |
59 |
5 13 7 18 56 58
|
syl32anc |
⊢ ( 𝜑 → ( ( 𝐴 + 𝐵 ) / 𝐶 ) = ( ( 𝐴 / 𝐶 ) + ( 𝐵 / 𝐶 ) ) ) |