| Step |
Hyp |
Ref |
Expression |
| 1 |
|
q1pval.q |
⊢ 𝑄 = ( quot1p ‘ 𝑅 ) |
| 2 |
|
q1pval.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 3 |
|
q1pval.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 4 |
|
q1pval.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
| 5 |
|
q1pval.m |
⊢ − = ( -g ‘ 𝑃 ) |
| 6 |
|
q1pval.t |
⊢ · = ( .r ‘ 𝑃 ) |
| 7 |
|
q1peqb.c |
⊢ 𝐶 = ( Unic1p ‘ 𝑅 ) |
| 8 |
|
elex |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ V ) |
| 9 |
8
|
adantr |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ ( 𝐷 ‘ ( 𝐹 − ( 𝑋 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) → 𝑋 ∈ V ) |
| 10 |
9
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( ( 𝑋 ∈ 𝐵 ∧ ( 𝐷 ‘ ( 𝐹 − ( 𝑋 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) → 𝑋 ∈ V ) ) |
| 11 |
|
ovex |
⊢ ( 𝐹 𝑄 𝐺 ) ∈ V |
| 12 |
|
eleq1 |
⊢ ( ( 𝐹 𝑄 𝐺 ) = 𝑋 → ( ( 𝐹 𝑄 𝐺 ) ∈ V ↔ 𝑋 ∈ V ) ) |
| 13 |
11 12
|
mpbii |
⊢ ( ( 𝐹 𝑄 𝐺 ) = 𝑋 → 𝑋 ∈ V ) |
| 14 |
13
|
a1i |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( ( 𝐹 𝑄 𝐺 ) = 𝑋 → 𝑋 ∈ V ) ) |
| 15 |
|
simpr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ 𝑋 ∈ V ) → 𝑋 ∈ V ) |
| 16 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 17 |
|
simp1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → 𝑅 ∈ Ring ) |
| 18 |
|
simp2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → 𝐹 ∈ 𝐵 ) |
| 19 |
2 3 7
|
uc1pcl |
⊢ ( 𝐺 ∈ 𝐶 → 𝐺 ∈ 𝐵 ) |
| 20 |
19
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → 𝐺 ∈ 𝐵 ) |
| 21 |
2 16 7
|
uc1pn0 |
⊢ ( 𝐺 ∈ 𝐶 → 𝐺 ≠ ( 0g ‘ 𝑃 ) ) |
| 22 |
21
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → 𝐺 ≠ ( 0g ‘ 𝑃 ) ) |
| 23 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
| 24 |
4 23 7
|
uc1pldg |
⊢ ( 𝐺 ∈ 𝐶 → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
| 25 |
24
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( ( coe1 ‘ 𝐺 ) ‘ ( 𝐷 ‘ 𝐺 ) ) ∈ ( Unit ‘ 𝑅 ) ) |
| 26 |
2 4 3 5 16 6 17 18 20 22 25 23
|
ply1divalg2 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ∃! 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝑞 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) |
| 27 |
|
df-reu |
⊢ ( ∃! 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝑞 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ∃! 𝑞 ( 𝑞 ∈ 𝐵 ∧ ( 𝐷 ‘ ( 𝐹 − ( 𝑞 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 28 |
26 27
|
sylib |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ∃! 𝑞 ( 𝑞 ∈ 𝐵 ∧ ( 𝐷 ‘ ( 𝐹 − ( 𝑞 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 29 |
28
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ 𝑋 ∈ V ) → ∃! 𝑞 ( 𝑞 ∈ 𝐵 ∧ ( 𝐷 ‘ ( 𝐹 − ( 𝑞 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 30 |
|
eleq1 |
⊢ ( 𝑞 = 𝑋 → ( 𝑞 ∈ 𝐵 ↔ 𝑋 ∈ 𝐵 ) ) |
| 31 |
|
oveq1 |
⊢ ( 𝑞 = 𝑋 → ( 𝑞 · 𝐺 ) = ( 𝑋 · 𝐺 ) ) |
| 32 |
31
|
oveq2d |
⊢ ( 𝑞 = 𝑋 → ( 𝐹 − ( 𝑞 · 𝐺 ) ) = ( 𝐹 − ( 𝑋 · 𝐺 ) ) ) |
| 33 |
32
|
fveq2d |
⊢ ( 𝑞 = 𝑋 → ( 𝐷 ‘ ( 𝐹 − ( 𝑞 · 𝐺 ) ) ) = ( 𝐷 ‘ ( 𝐹 − ( 𝑋 · 𝐺 ) ) ) ) |
| 34 |
33
|
breq1d |
⊢ ( 𝑞 = 𝑋 → ( ( 𝐷 ‘ ( 𝐹 − ( 𝑞 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ↔ ( 𝐷 ‘ ( 𝐹 − ( 𝑋 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 35 |
30 34
|
anbi12d |
⊢ ( 𝑞 = 𝑋 → ( ( 𝑞 ∈ 𝐵 ∧ ( 𝐷 ‘ ( 𝐹 − ( 𝑞 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐷 ‘ ( 𝐹 − ( 𝑋 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) |
| 36 |
35
|
adantl |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ 𝑋 ∈ V ) ∧ 𝑞 = 𝑋 ) → ( ( 𝑞 ∈ 𝐵 ∧ ( 𝐷 ‘ ( 𝐹 − ( 𝑞 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ( 𝑋 ∈ 𝐵 ∧ ( 𝐷 ‘ ( 𝐹 − ( 𝑋 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) |
| 37 |
15 29 36
|
iota2d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ 𝑋 ∈ V ) → ( ( 𝑋 ∈ 𝐵 ∧ ( 𝐷 ‘ ( 𝐹 − ( 𝑋 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ( ℩ 𝑞 ( 𝑞 ∈ 𝐵 ∧ ( 𝐷 ‘ ( 𝐹 − ( 𝑞 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) = 𝑋 ) ) |
| 38 |
1 2 3 4 5 6
|
q1pval |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 𝑄 𝐺 ) = ( ℩ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝑞 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 39 |
18 20 38
|
syl2anc |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( 𝐹 𝑄 𝐺 ) = ( ℩ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝑞 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 40 |
|
df-riota |
⊢ ( ℩ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝑞 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) = ( ℩ 𝑞 ( 𝑞 ∈ 𝐵 ∧ ( 𝐷 ‘ ( 𝐹 − ( 𝑞 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
| 41 |
39 40
|
eqtrdi |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( 𝐹 𝑄 𝐺 ) = ( ℩ 𝑞 ( 𝑞 ∈ 𝐵 ∧ ( 𝐷 ‘ ( 𝐹 − ( 𝑞 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) |
| 42 |
41
|
adantr |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ 𝑋 ∈ V ) → ( 𝐹 𝑄 𝐺 ) = ( ℩ 𝑞 ( 𝑞 ∈ 𝐵 ∧ ( 𝐷 ‘ ( 𝐹 − ( 𝑞 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) ) |
| 43 |
42
|
eqeq1d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ 𝑋 ∈ V ) → ( ( 𝐹 𝑄 𝐺 ) = 𝑋 ↔ ( ℩ 𝑞 ( 𝑞 ∈ 𝐵 ∧ ( 𝐷 ‘ ( 𝐹 − ( 𝑞 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) = 𝑋 ) ) |
| 44 |
37 43
|
bitr4d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) ∧ 𝑋 ∈ V ) → ( ( 𝑋 ∈ 𝐵 ∧ ( 𝐷 ‘ ( 𝐹 − ( 𝑋 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ( 𝐹 𝑄 𝐺 ) = 𝑋 ) ) |
| 45 |
44
|
ex |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( 𝑋 ∈ V → ( ( 𝑋 ∈ 𝐵 ∧ ( 𝐷 ‘ ( 𝐹 − ( 𝑋 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ( 𝐹 𝑄 𝐺 ) = 𝑋 ) ) ) |
| 46 |
10 14 45
|
pm5.21ndd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐶 ) → ( ( 𝑋 ∈ 𝐵 ∧ ( 𝐷 ‘ ( 𝐹 − ( 𝑋 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ↔ ( 𝐹 𝑄 𝐺 ) = 𝑋 ) ) |