Step |
Hyp |
Ref |
Expression |
1 |
|
q1pval.q |
⊢ 𝑄 = ( quot1p ‘ 𝑅 ) |
2 |
|
q1pval.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
3 |
|
q1pval.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
4 |
|
q1pval.d |
⊢ 𝐷 = ( deg1 ‘ 𝑅 ) |
5 |
|
q1pval.m |
⊢ − = ( -g ‘ 𝑃 ) |
6 |
|
q1pval.t |
⊢ · = ( .r ‘ 𝑃 ) |
7 |
2 3
|
elbasfv |
⊢ ( 𝐺 ∈ 𝐵 → 𝑅 ∈ V ) |
8 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( Poly1 ‘ 𝑟 ) = ( Poly1 ‘ 𝑅 ) ) |
9 |
8 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( Poly1 ‘ 𝑟 ) = 𝑃 ) |
10 |
9
|
csbeq1d |
⊢ ( 𝑟 = 𝑅 → ⦋ ( Poly1 ‘ 𝑟 ) / 𝑝 ⦌ ⦋ ( Base ‘ 𝑝 ) / 𝑏 ⦌ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ℩ 𝑞 ∈ 𝑏 ( ( deg1 ‘ 𝑟 ) ‘ ( 𝑓 ( -g ‘ 𝑝 ) ( 𝑞 ( .r ‘ 𝑝 ) 𝑔 ) ) ) < ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) ) ) = ⦋ 𝑃 / 𝑝 ⦌ ⦋ ( Base ‘ 𝑝 ) / 𝑏 ⦌ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ℩ 𝑞 ∈ 𝑏 ( ( deg1 ‘ 𝑟 ) ‘ ( 𝑓 ( -g ‘ 𝑝 ) ( 𝑞 ( .r ‘ 𝑝 ) 𝑔 ) ) ) < ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) ) ) ) |
11 |
2
|
fvexi |
⊢ 𝑃 ∈ V |
12 |
11
|
a1i |
⊢ ( 𝑟 = 𝑅 → 𝑃 ∈ V ) |
13 |
|
fveq2 |
⊢ ( 𝑝 = 𝑃 → ( Base ‘ 𝑝 ) = ( Base ‘ 𝑃 ) ) |
14 |
13
|
adantl |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑝 = 𝑃 ) → ( Base ‘ 𝑝 ) = ( Base ‘ 𝑃 ) ) |
15 |
14 3
|
eqtr4di |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑝 = 𝑃 ) → ( Base ‘ 𝑝 ) = 𝐵 ) |
16 |
15
|
csbeq1d |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑝 = 𝑃 ) → ⦋ ( Base ‘ 𝑝 ) / 𝑏 ⦌ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ℩ 𝑞 ∈ 𝑏 ( ( deg1 ‘ 𝑟 ) ‘ ( 𝑓 ( -g ‘ 𝑝 ) ( 𝑞 ( .r ‘ 𝑝 ) 𝑔 ) ) ) < ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) ) ) = ⦋ 𝐵 / 𝑏 ⦌ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ℩ 𝑞 ∈ 𝑏 ( ( deg1 ‘ 𝑟 ) ‘ ( 𝑓 ( -g ‘ 𝑝 ) ( 𝑞 ( .r ‘ 𝑝 ) 𝑔 ) ) ) < ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) ) ) ) |
17 |
3
|
fvexi |
⊢ 𝐵 ∈ V |
18 |
17
|
a1i |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑝 = 𝑃 ) → 𝐵 ∈ V ) |
19 |
|
simpr |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑝 = 𝑃 ) ∧ 𝑏 = 𝐵 ) → 𝑏 = 𝐵 ) |
20 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( deg1 ‘ 𝑟 ) = ( deg1 ‘ 𝑅 ) ) |
21 |
20
|
ad2antrr |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑝 = 𝑃 ) ∧ 𝑏 = 𝐵 ) → ( deg1 ‘ 𝑟 ) = ( deg1 ‘ 𝑅 ) ) |
22 |
21 4
|
eqtr4di |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑝 = 𝑃 ) ∧ 𝑏 = 𝐵 ) → ( deg1 ‘ 𝑟 ) = 𝐷 ) |
23 |
|
fveq2 |
⊢ ( 𝑝 = 𝑃 → ( -g ‘ 𝑝 ) = ( -g ‘ 𝑃 ) ) |
24 |
23
|
ad2antlr |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑝 = 𝑃 ) ∧ 𝑏 = 𝐵 ) → ( -g ‘ 𝑝 ) = ( -g ‘ 𝑃 ) ) |
25 |
24 5
|
eqtr4di |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑝 = 𝑃 ) ∧ 𝑏 = 𝐵 ) → ( -g ‘ 𝑝 ) = − ) |
26 |
|
eqidd |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑝 = 𝑃 ) ∧ 𝑏 = 𝐵 ) → 𝑓 = 𝑓 ) |
27 |
|
fveq2 |
⊢ ( 𝑝 = 𝑃 → ( .r ‘ 𝑝 ) = ( .r ‘ 𝑃 ) ) |
28 |
27
|
ad2antlr |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑝 = 𝑃 ) ∧ 𝑏 = 𝐵 ) → ( .r ‘ 𝑝 ) = ( .r ‘ 𝑃 ) ) |
29 |
28 6
|
eqtr4di |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑝 = 𝑃 ) ∧ 𝑏 = 𝐵 ) → ( .r ‘ 𝑝 ) = · ) |
30 |
29
|
oveqd |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑝 = 𝑃 ) ∧ 𝑏 = 𝐵 ) → ( 𝑞 ( .r ‘ 𝑝 ) 𝑔 ) = ( 𝑞 · 𝑔 ) ) |
31 |
25 26 30
|
oveq123d |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑝 = 𝑃 ) ∧ 𝑏 = 𝐵 ) → ( 𝑓 ( -g ‘ 𝑝 ) ( 𝑞 ( .r ‘ 𝑝 ) 𝑔 ) ) = ( 𝑓 − ( 𝑞 · 𝑔 ) ) ) |
32 |
22 31
|
fveq12d |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑝 = 𝑃 ) ∧ 𝑏 = 𝐵 ) → ( ( deg1 ‘ 𝑟 ) ‘ ( 𝑓 ( -g ‘ 𝑝 ) ( 𝑞 ( .r ‘ 𝑝 ) 𝑔 ) ) ) = ( 𝐷 ‘ ( 𝑓 − ( 𝑞 · 𝑔 ) ) ) ) |
33 |
22
|
fveq1d |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑝 = 𝑃 ) ∧ 𝑏 = 𝐵 ) → ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) = ( 𝐷 ‘ 𝑔 ) ) |
34 |
32 33
|
breq12d |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑝 = 𝑃 ) ∧ 𝑏 = 𝐵 ) → ( ( ( deg1 ‘ 𝑟 ) ‘ ( 𝑓 ( -g ‘ 𝑝 ) ( 𝑞 ( .r ‘ 𝑝 ) 𝑔 ) ) ) < ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) ↔ ( 𝐷 ‘ ( 𝑓 − ( 𝑞 · 𝑔 ) ) ) < ( 𝐷 ‘ 𝑔 ) ) ) |
35 |
19 34
|
riotaeqbidv |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑝 = 𝑃 ) ∧ 𝑏 = 𝐵 ) → ( ℩ 𝑞 ∈ 𝑏 ( ( deg1 ‘ 𝑟 ) ‘ ( 𝑓 ( -g ‘ 𝑝 ) ( 𝑞 ( .r ‘ 𝑝 ) 𝑔 ) ) ) < ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) ) = ( ℩ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝑞 · 𝑔 ) ) ) < ( 𝐷 ‘ 𝑔 ) ) ) |
36 |
19 19 35
|
mpoeq123dv |
⊢ ( ( ( 𝑟 = 𝑅 ∧ 𝑝 = 𝑃 ) ∧ 𝑏 = 𝐵 ) → ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ℩ 𝑞 ∈ 𝑏 ( ( deg1 ‘ 𝑟 ) ‘ ( 𝑓 ( -g ‘ 𝑝 ) ( 𝑞 ( .r ‘ 𝑝 ) 𝑔 ) ) ) < ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( ℩ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝑞 · 𝑔 ) ) ) < ( 𝐷 ‘ 𝑔 ) ) ) ) |
37 |
18 36
|
csbied |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑝 = 𝑃 ) → ⦋ 𝐵 / 𝑏 ⦌ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ℩ 𝑞 ∈ 𝑏 ( ( deg1 ‘ 𝑟 ) ‘ ( 𝑓 ( -g ‘ 𝑝 ) ( 𝑞 ( .r ‘ 𝑝 ) 𝑔 ) ) ) < ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( ℩ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝑞 · 𝑔 ) ) ) < ( 𝐷 ‘ 𝑔 ) ) ) ) |
38 |
16 37
|
eqtrd |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑝 = 𝑃 ) → ⦋ ( Base ‘ 𝑝 ) / 𝑏 ⦌ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ℩ 𝑞 ∈ 𝑏 ( ( deg1 ‘ 𝑟 ) ‘ ( 𝑓 ( -g ‘ 𝑝 ) ( 𝑞 ( .r ‘ 𝑝 ) 𝑔 ) ) ) < ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( ℩ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝑞 · 𝑔 ) ) ) < ( 𝐷 ‘ 𝑔 ) ) ) ) |
39 |
12 38
|
csbied |
⊢ ( 𝑟 = 𝑅 → ⦋ 𝑃 / 𝑝 ⦌ ⦋ ( Base ‘ 𝑝 ) / 𝑏 ⦌ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ℩ 𝑞 ∈ 𝑏 ( ( deg1 ‘ 𝑟 ) ‘ ( 𝑓 ( -g ‘ 𝑝 ) ( 𝑞 ( .r ‘ 𝑝 ) 𝑔 ) ) ) < ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( ℩ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝑞 · 𝑔 ) ) ) < ( 𝐷 ‘ 𝑔 ) ) ) ) |
40 |
10 39
|
eqtrd |
⊢ ( 𝑟 = 𝑅 → ⦋ ( Poly1 ‘ 𝑟 ) / 𝑝 ⦌ ⦋ ( Base ‘ 𝑝 ) / 𝑏 ⦌ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ℩ 𝑞 ∈ 𝑏 ( ( deg1 ‘ 𝑟 ) ‘ ( 𝑓 ( -g ‘ 𝑝 ) ( 𝑞 ( .r ‘ 𝑝 ) 𝑔 ) ) ) < ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) ) ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( ℩ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝑞 · 𝑔 ) ) ) < ( 𝐷 ‘ 𝑔 ) ) ) ) |
41 |
|
df-q1p |
⊢ quot1p = ( 𝑟 ∈ V ↦ ⦋ ( Poly1 ‘ 𝑟 ) / 𝑝 ⦌ ⦋ ( Base ‘ 𝑝 ) / 𝑏 ⦌ ( 𝑓 ∈ 𝑏 , 𝑔 ∈ 𝑏 ↦ ( ℩ 𝑞 ∈ 𝑏 ( ( deg1 ‘ 𝑟 ) ‘ ( 𝑓 ( -g ‘ 𝑝 ) ( 𝑞 ( .r ‘ 𝑝 ) 𝑔 ) ) ) < ( ( deg1 ‘ 𝑟 ) ‘ 𝑔 ) ) ) ) |
42 |
17 17
|
mpoex |
⊢ ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( ℩ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝑞 · 𝑔 ) ) ) < ( 𝐷 ‘ 𝑔 ) ) ) ∈ V |
43 |
40 41 42
|
fvmpt |
⊢ ( 𝑅 ∈ V → ( quot1p ‘ 𝑅 ) = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( ℩ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝑞 · 𝑔 ) ) ) < ( 𝐷 ‘ 𝑔 ) ) ) ) |
44 |
1 43
|
syl5eq |
⊢ ( 𝑅 ∈ V → 𝑄 = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( ℩ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝑞 · 𝑔 ) ) ) < ( 𝐷 ‘ 𝑔 ) ) ) ) |
45 |
7 44
|
syl |
⊢ ( 𝐺 ∈ 𝐵 → 𝑄 = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( ℩ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝑞 · 𝑔 ) ) ) < ( 𝐷 ‘ 𝑔 ) ) ) ) |
46 |
45
|
adantl |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝑄 = ( 𝑓 ∈ 𝐵 , 𝑔 ∈ 𝐵 ↦ ( ℩ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝑞 · 𝑔 ) ) ) < ( 𝐷 ‘ 𝑔 ) ) ) ) |
47 |
|
id |
⊢ ( 𝑓 = 𝐹 → 𝑓 = 𝐹 ) |
48 |
|
oveq2 |
⊢ ( 𝑔 = 𝐺 → ( 𝑞 · 𝑔 ) = ( 𝑞 · 𝐺 ) ) |
49 |
47 48
|
oveqan12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝑓 − ( 𝑞 · 𝑔 ) ) = ( 𝐹 − ( 𝑞 · 𝐺 ) ) ) |
50 |
49
|
fveq2d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝐷 ‘ ( 𝑓 − ( 𝑞 · 𝑔 ) ) ) = ( 𝐷 ‘ ( 𝐹 − ( 𝑞 · 𝐺 ) ) ) ) |
51 |
|
fveq2 |
⊢ ( 𝑔 = 𝐺 → ( 𝐷 ‘ 𝑔 ) = ( 𝐷 ‘ 𝐺 ) ) |
52 |
51
|
adantl |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( 𝐷 ‘ 𝑔 ) = ( 𝐷 ‘ 𝐺 ) ) |
53 |
50 52
|
breq12d |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ( 𝐷 ‘ ( 𝑓 − ( 𝑞 · 𝑔 ) ) ) < ( 𝐷 ‘ 𝑔 ) ↔ ( 𝐷 ‘ ( 𝐹 − ( 𝑞 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
54 |
53
|
riotabidv |
⊢ ( ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) → ( ℩ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝑞 · 𝑔 ) ) ) < ( 𝐷 ‘ 𝑔 ) ) = ( ℩ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝑞 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
55 |
54
|
adantl |
⊢ ( ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) ∧ ( 𝑓 = 𝐹 ∧ 𝑔 = 𝐺 ) ) → ( ℩ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝑓 − ( 𝑞 · 𝑔 ) ) ) < ( 𝐷 ‘ 𝑔 ) ) = ( ℩ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝑞 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |
56 |
|
simpl |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐹 ∈ 𝐵 ) |
57 |
|
simpr |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → 𝐺 ∈ 𝐵 ) |
58 |
|
riotaex |
⊢ ( ℩ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝑞 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ∈ V |
59 |
58
|
a1i |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( ℩ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝑞 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ∈ V ) |
60 |
46 55 56 57 59
|
ovmpod |
⊢ ( ( 𝐹 ∈ 𝐵 ∧ 𝐺 ∈ 𝐵 ) → ( 𝐹 𝑄 𝐺 ) = ( ℩ 𝑞 ∈ 𝐵 ( 𝐷 ‘ ( 𝐹 − ( 𝑞 · 𝐺 ) ) ) < ( 𝐷 ‘ 𝐺 ) ) ) |