Step |
Hyp |
Ref |
Expression |
1 |
|
r1padd1.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
2 |
|
r1padd1.u |
⊢ 𝑈 = ( Base ‘ 𝑃 ) |
3 |
|
r1padd1.n |
⊢ 𝑁 = ( Unic1p ‘ 𝑅 ) |
4 |
|
q1pdir.d |
⊢ / = ( quot1p ‘ 𝑅 ) |
5 |
|
q1pdir.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
6 |
|
q1pdir.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑈 ) |
7 |
|
q1pdir.c |
⊢ ( 𝜑 → 𝐶 ∈ 𝑁 ) |
8 |
|
q1pvsca.1 |
⊢ × = ( ·𝑠 ‘ 𝑃 ) |
9 |
|
q1pvsca.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
10 |
|
q1pvsca.8 |
⊢ ( 𝜑 → 𝐵 ∈ 𝐾 ) |
11 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
12 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑃 ) ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) |
13 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
14 |
5 13
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
15 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
16 |
5 15
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
17 |
16
|
fveq2d |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
18 |
9 17
|
eqtrid |
⊢ ( 𝜑 → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
19 |
10 18
|
eleqtrd |
⊢ ( 𝜑 → 𝐵 ∈ ( Base ‘ ( Scalar ‘ 𝑃 ) ) ) |
20 |
2 11 8 12 14 19 6
|
lmodvscld |
⊢ ( 𝜑 → ( 𝐵 × 𝐴 ) ∈ 𝑈 ) |
21 |
4 1 2 3
|
q1pcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑁 ) → ( 𝐴 / 𝐶 ) ∈ 𝑈 ) |
22 |
5 6 7 21
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 / 𝐶 ) ∈ 𝑈 ) |
23 |
2 11 8 12 14 19 22
|
lmodvscld |
⊢ ( 𝜑 → ( 𝐵 × ( 𝐴 / 𝐶 ) ) ∈ 𝑈 ) |
24 |
14
|
lmodgrpd |
⊢ ( 𝜑 → 𝑃 ∈ Grp ) |
25 |
|
eqid |
⊢ ( .r ‘ 𝑃 ) = ( .r ‘ 𝑃 ) |
26 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
27 |
5 26
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ Ring ) |
28 |
1 2 3
|
uc1pcl |
⊢ ( 𝐶 ∈ 𝑁 → 𝐶 ∈ 𝑈 ) |
29 |
7 28
|
syl |
⊢ ( 𝜑 → 𝐶 ∈ 𝑈 ) |
30 |
2 25 27 23 29
|
ringcld |
⊢ ( 𝜑 → ( ( 𝐵 × ( 𝐴 / 𝐶 ) ) ( .r ‘ 𝑃 ) 𝐶 ) ∈ 𝑈 ) |
31 |
|
eqid |
⊢ ( -g ‘ 𝑃 ) = ( -g ‘ 𝑃 ) |
32 |
2 31
|
grpsubcl |
⊢ ( ( 𝑃 ∈ Grp ∧ ( 𝐵 × 𝐴 ) ∈ 𝑈 ∧ ( ( 𝐵 × ( 𝐴 / 𝐶 ) ) ( .r ‘ 𝑃 ) 𝐶 ) ∈ 𝑈 ) → ( ( 𝐵 × 𝐴 ) ( -g ‘ 𝑃 ) ( ( 𝐵 × ( 𝐴 / 𝐶 ) ) ( .r ‘ 𝑃 ) 𝐶 ) ) ∈ 𝑈 ) |
33 |
24 20 30 32
|
syl3anc |
⊢ ( 𝜑 → ( ( 𝐵 × 𝐴 ) ( -g ‘ 𝑃 ) ( ( 𝐵 × ( 𝐴 / 𝐶 ) ) ( .r ‘ 𝑃 ) 𝐶 ) ) ∈ 𝑈 ) |
34 |
|
eqid |
⊢ ( deg1 ‘ 𝑅 ) = ( deg1 ‘ 𝑅 ) |
35 |
34 1 2
|
deg1xrcl |
⊢ ( ( ( 𝐵 × 𝐴 ) ( -g ‘ 𝑃 ) ( ( 𝐵 × ( 𝐴 / 𝐶 ) ) ( .r ‘ 𝑃 ) 𝐶 ) ) ∈ 𝑈 → ( ( deg1 ‘ 𝑅 ) ‘ ( ( 𝐵 × 𝐴 ) ( -g ‘ 𝑃 ) ( ( 𝐵 × ( 𝐴 / 𝐶 ) ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) ∈ ℝ* ) |
36 |
33 35
|
syl |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝑅 ) ‘ ( ( 𝐵 × 𝐴 ) ( -g ‘ 𝑃 ) ( ( 𝐵 × ( 𝐴 / 𝐶 ) ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) ∈ ℝ* ) |
37 |
|
eqid |
⊢ ( rem1p ‘ 𝑅 ) = ( rem1p ‘ 𝑅 ) |
38 |
37 1 2 4 25 31
|
r1pval |
⊢ ( ( 𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑈 ) → ( 𝐴 ( rem1p ‘ 𝑅 ) 𝐶 ) = ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) |
39 |
6 29 38
|
syl2anc |
⊢ ( 𝜑 → ( 𝐴 ( rem1p ‘ 𝑅 ) 𝐶 ) = ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) |
40 |
2 25 27 22 29
|
ringcld |
⊢ ( 𝜑 → ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ∈ 𝑈 ) |
41 |
2 31
|
grpsubcl |
⊢ ( ( 𝑃 ∈ Grp ∧ 𝐴 ∈ 𝑈 ∧ ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ∈ 𝑈 ) → ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ∈ 𝑈 ) |
42 |
24 6 40 41
|
syl3anc |
⊢ ( 𝜑 → ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ∈ 𝑈 ) |
43 |
39 42
|
eqeltrd |
⊢ ( 𝜑 → ( 𝐴 ( rem1p ‘ 𝑅 ) 𝐶 ) ∈ 𝑈 ) |
44 |
34 1 2
|
deg1xrcl |
⊢ ( ( 𝐴 ( rem1p ‘ 𝑅 ) 𝐶 ) ∈ 𝑈 → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐴 ( rem1p ‘ 𝑅 ) 𝐶 ) ) ∈ ℝ* ) |
45 |
43 44
|
syl |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐴 ( rem1p ‘ 𝑅 ) 𝐶 ) ) ∈ ℝ* ) |
46 |
34 1 2
|
deg1xrcl |
⊢ ( 𝐶 ∈ 𝑈 → ( ( deg1 ‘ 𝑅 ) ‘ 𝐶 ) ∈ ℝ* ) |
47 |
29 46
|
syl |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝑅 ) ‘ 𝐶 ) ∈ ℝ* ) |
48 |
1 34 5 2 9 8 10 42
|
deg1vscale |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐵 × ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) ) ≤ ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) ) |
49 |
1 25 2 9 8
|
ply1ass23l |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐵 ∈ 𝐾 ∧ ( 𝐴 / 𝐶 ) ∈ 𝑈 ∧ 𝐶 ∈ 𝑈 ) ) → ( ( 𝐵 × ( 𝐴 / 𝐶 ) ) ( .r ‘ 𝑃 ) 𝐶 ) = ( 𝐵 × ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) |
50 |
5 10 22 29 49
|
syl13anc |
⊢ ( 𝜑 → ( ( 𝐵 × ( 𝐴 / 𝐶 ) ) ( .r ‘ 𝑃 ) 𝐶 ) = ( 𝐵 × ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) |
51 |
50
|
oveq2d |
⊢ ( 𝜑 → ( ( 𝐵 × 𝐴 ) ( -g ‘ 𝑃 ) ( ( 𝐵 × ( 𝐴 / 𝐶 ) ) ( .r ‘ 𝑃 ) 𝐶 ) ) = ( ( 𝐵 × 𝐴 ) ( -g ‘ 𝑃 ) ( 𝐵 × ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) ) |
52 |
2 8 11 12 31 14 19 6 40
|
lmodsubdi |
⊢ ( 𝜑 → ( 𝐵 × ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) = ( ( 𝐵 × 𝐴 ) ( -g ‘ 𝑃 ) ( 𝐵 × ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) ) |
53 |
51 52
|
eqtr4d |
⊢ ( 𝜑 → ( ( 𝐵 × 𝐴 ) ( -g ‘ 𝑃 ) ( ( 𝐵 × ( 𝐴 / 𝐶 ) ) ( .r ‘ 𝑃 ) 𝐶 ) ) = ( 𝐵 × ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) ) |
54 |
53
|
fveq2d |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝑅 ) ‘ ( ( 𝐵 × 𝐴 ) ( -g ‘ 𝑃 ) ( ( 𝐵 × ( 𝐴 / 𝐶 ) ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) = ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐵 × ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) ) ) |
55 |
39
|
fveq2d |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐴 ( rem1p ‘ 𝑅 ) 𝐶 ) ) = ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐴 ( -g ‘ 𝑃 ) ( ( 𝐴 / 𝐶 ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) ) |
56 |
48 54 55
|
3brtr4d |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝑅 ) ‘ ( ( 𝐵 × 𝐴 ) ( -g ‘ 𝑃 ) ( ( 𝐵 × ( 𝐴 / 𝐶 ) ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) ≤ ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐴 ( rem1p ‘ 𝑅 ) 𝐶 ) ) ) |
57 |
37 1 2 3 34
|
r1pdeglt |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝑈 ∧ 𝐶 ∈ 𝑁 ) → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐴 ( rem1p ‘ 𝑅 ) 𝐶 ) ) < ( ( deg1 ‘ 𝑅 ) ‘ 𝐶 ) ) |
58 |
5 6 7 57
|
syl3anc |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝑅 ) ‘ ( 𝐴 ( rem1p ‘ 𝑅 ) 𝐶 ) ) < ( ( deg1 ‘ 𝑅 ) ‘ 𝐶 ) ) |
59 |
36 45 47 56 58
|
xrlelttrd |
⊢ ( 𝜑 → ( ( deg1 ‘ 𝑅 ) ‘ ( ( 𝐵 × 𝐴 ) ( -g ‘ 𝑃 ) ( ( 𝐵 × ( 𝐴 / 𝐶 ) ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) < ( ( deg1 ‘ 𝑅 ) ‘ 𝐶 ) ) |
60 |
4 1 2 34 31 25 3
|
q1peqb |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐵 × 𝐴 ) ∈ 𝑈 ∧ 𝐶 ∈ 𝑁 ) → ( ( ( 𝐵 × ( 𝐴 / 𝐶 ) ) ∈ 𝑈 ∧ ( ( deg1 ‘ 𝑅 ) ‘ ( ( 𝐵 × 𝐴 ) ( -g ‘ 𝑃 ) ( ( 𝐵 × ( 𝐴 / 𝐶 ) ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) < ( ( deg1 ‘ 𝑅 ) ‘ 𝐶 ) ) ↔ ( ( 𝐵 × 𝐴 ) / 𝐶 ) = ( 𝐵 × ( 𝐴 / 𝐶 ) ) ) ) |
61 |
60
|
biimpa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ ( 𝐵 × 𝐴 ) ∈ 𝑈 ∧ 𝐶 ∈ 𝑁 ) ∧ ( ( 𝐵 × ( 𝐴 / 𝐶 ) ) ∈ 𝑈 ∧ ( ( deg1 ‘ 𝑅 ) ‘ ( ( 𝐵 × 𝐴 ) ( -g ‘ 𝑃 ) ( ( 𝐵 × ( 𝐴 / 𝐶 ) ) ( .r ‘ 𝑃 ) 𝐶 ) ) ) < ( ( deg1 ‘ 𝑅 ) ‘ 𝐶 ) ) ) → ( ( 𝐵 × 𝐴 ) / 𝐶 ) = ( 𝐵 × ( 𝐴 / 𝐶 ) ) ) |
62 |
5 20 7 23 59 61
|
syl32anc |
⊢ ( 𝜑 → ( ( 𝐵 × 𝐴 ) / 𝐶 ) = ( 𝐵 × ( 𝐴 / 𝐶 ) ) ) |