| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qcn | ⊢ ( 𝐴  ∈  ℚ  →  𝐴  ∈  ℂ ) | 
						
							| 2 |  | qsscn | ⊢ ℚ  ⊆  ℂ | 
						
							| 3 |  | 1z | ⊢ 1  ∈  ℤ | 
						
							| 4 |  | zq | ⊢ ( 1  ∈  ℤ  →  1  ∈  ℚ ) | 
						
							| 5 | 3 4 | ax-mp | ⊢ 1  ∈  ℚ | 
						
							| 6 |  | plyid | ⊢ ( ( ℚ  ⊆  ℂ  ∧  1  ∈  ℚ )  →  Xp  ∈  ( Poly ‘ ℚ ) ) | 
						
							| 7 | 2 5 6 | mp2an | ⊢ Xp  ∈  ( Poly ‘ ℚ ) | 
						
							| 8 | 7 | a1i | ⊢ ( 𝐴  ∈  ℚ  →  Xp  ∈  ( Poly ‘ ℚ ) ) | 
						
							| 9 |  | plyconst | ⊢ ( ( ℚ  ⊆  ℂ  ∧  𝐴  ∈  ℚ )  →  ( ℂ  ×  { 𝐴 } )  ∈  ( Poly ‘ ℚ ) ) | 
						
							| 10 | 2 9 | mpan | ⊢ ( 𝐴  ∈  ℚ  →  ( ℂ  ×  { 𝐴 } )  ∈  ( Poly ‘ ℚ ) ) | 
						
							| 11 |  | qaddcl | ⊢ ( ( 𝑥  ∈  ℚ  ∧  𝑦  ∈  ℚ )  →  ( 𝑥  +  𝑦 )  ∈  ℚ ) | 
						
							| 12 | 11 | adantl | ⊢ ( ( 𝐴  ∈  ℚ  ∧  ( 𝑥  ∈  ℚ  ∧  𝑦  ∈  ℚ ) )  →  ( 𝑥  +  𝑦 )  ∈  ℚ ) | 
						
							| 13 |  | qmulcl | ⊢ ( ( 𝑥  ∈  ℚ  ∧  𝑦  ∈  ℚ )  →  ( 𝑥  ·  𝑦 )  ∈  ℚ ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝐴  ∈  ℚ  ∧  ( 𝑥  ∈  ℚ  ∧  𝑦  ∈  ℚ ) )  →  ( 𝑥  ·  𝑦 )  ∈  ℚ ) | 
						
							| 15 |  | qnegcl | ⊢ ( 1  ∈  ℚ  →  - 1  ∈  ℚ ) | 
						
							| 16 | 5 15 | ax-mp | ⊢ - 1  ∈  ℚ | 
						
							| 17 | 16 | a1i | ⊢ ( 𝐴  ∈  ℚ  →  - 1  ∈  ℚ ) | 
						
							| 18 | 8 10 12 14 17 | plysub | ⊢ ( 𝐴  ∈  ℚ  →  ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) )  ∈  ( Poly ‘ ℚ ) ) | 
						
							| 19 |  | peano2cn | ⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  +  1 )  ∈  ℂ ) | 
						
							| 20 | 1 19 | syl | ⊢ ( 𝐴  ∈  ℚ  →  ( 𝐴  +  1 )  ∈  ℂ ) | 
						
							| 21 |  | fnresi | ⊢ (  I   ↾  ℂ )  Fn  ℂ | 
						
							| 22 |  | df-idp | ⊢ Xp  =  (  I   ↾  ℂ ) | 
						
							| 23 | 22 | fneq1i | ⊢ ( Xp  Fn  ℂ  ↔  (  I   ↾  ℂ )  Fn  ℂ ) | 
						
							| 24 | 21 23 | mpbir | ⊢ Xp  Fn  ℂ | 
						
							| 25 | 24 | a1i | ⊢ ( 𝐴  ∈  ℚ  →  Xp  Fn  ℂ ) | 
						
							| 26 |  | fnconstg | ⊢ ( 𝐴  ∈  ℚ  →  ( ℂ  ×  { 𝐴 } )  Fn  ℂ ) | 
						
							| 27 |  | cnex | ⊢ ℂ  ∈  V | 
						
							| 28 | 27 | a1i | ⊢ ( 𝐴  ∈  ℚ  →  ℂ  ∈  V ) | 
						
							| 29 |  | inidm | ⊢ ( ℂ  ∩  ℂ )  =  ℂ | 
						
							| 30 | 22 | fveq1i | ⊢ ( Xp ‘ ( 𝐴  +  1 ) )  =  ( (  I   ↾  ℂ ) ‘ ( 𝐴  +  1 ) ) | 
						
							| 31 |  | fvresi | ⊢ ( ( 𝐴  +  1 )  ∈  ℂ  →  ( (  I   ↾  ℂ ) ‘ ( 𝐴  +  1 ) )  =  ( 𝐴  +  1 ) ) | 
						
							| 32 | 30 31 | eqtrid | ⊢ ( ( 𝐴  +  1 )  ∈  ℂ  →  ( Xp ‘ ( 𝐴  +  1 ) )  =  ( 𝐴  +  1 ) ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( 𝐴  ∈  ℚ  ∧  ( 𝐴  +  1 )  ∈  ℂ )  →  ( Xp ‘ ( 𝐴  +  1 ) )  =  ( 𝐴  +  1 ) ) | 
						
							| 34 |  | fvconst2g | ⊢ ( ( 𝐴  ∈  ℚ  ∧  ( 𝐴  +  1 )  ∈  ℂ )  →  ( ( ℂ  ×  { 𝐴 } ) ‘ ( 𝐴  +  1 ) )  =  𝐴 ) | 
						
							| 35 | 25 26 28 28 29 33 34 | ofval | ⊢ ( ( 𝐴  ∈  ℚ  ∧  ( 𝐴  +  1 )  ∈  ℂ )  →  ( ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) ) ‘ ( 𝐴  +  1 ) )  =  ( ( 𝐴  +  1 )  −  𝐴 ) ) | 
						
							| 36 | 20 35 | mpdan | ⊢ ( 𝐴  ∈  ℚ  →  ( ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) ) ‘ ( 𝐴  +  1 ) )  =  ( ( 𝐴  +  1 )  −  𝐴 ) ) | 
						
							| 37 |  | ax-1cn | ⊢ 1  ∈  ℂ | 
						
							| 38 |  | pncan2 | ⊢ ( ( 𝐴  ∈  ℂ  ∧  1  ∈  ℂ )  →  ( ( 𝐴  +  1 )  −  𝐴 )  =  1 ) | 
						
							| 39 | 1 37 38 | sylancl | ⊢ ( 𝐴  ∈  ℚ  →  ( ( 𝐴  +  1 )  −  𝐴 )  =  1 ) | 
						
							| 40 | 36 39 | eqtrd | ⊢ ( 𝐴  ∈  ℚ  →  ( ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) ) ‘ ( 𝐴  +  1 ) )  =  1 ) | 
						
							| 41 |  | ax-1ne0 | ⊢ 1  ≠  0 | 
						
							| 42 | 41 | a1i | ⊢ ( 𝐴  ∈  ℚ  →  1  ≠  0 ) | 
						
							| 43 | 40 42 | eqnetrd | ⊢ ( 𝐴  ∈  ℚ  →  ( ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) ) ‘ ( 𝐴  +  1 ) )  ≠  0 ) | 
						
							| 44 |  | ne0p | ⊢ ( ( ( 𝐴  +  1 )  ∈  ℂ  ∧  ( ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) ) ‘ ( 𝐴  +  1 ) )  ≠  0 )  →  ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) )  ≠  0𝑝 ) | 
						
							| 45 | 20 43 44 | syl2anc | ⊢ ( 𝐴  ∈  ℚ  →  ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) )  ≠  0𝑝 ) | 
						
							| 46 |  | eldifsn | ⊢ ( ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) )  ∈  ( ( Poly ‘ ℚ )  ∖  { 0𝑝 } )  ↔  ( ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) )  ∈  ( Poly ‘ ℚ )  ∧  ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) )  ≠  0𝑝 ) ) | 
						
							| 47 | 18 45 46 | sylanbrc | ⊢ ( 𝐴  ∈  ℚ  →  ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) )  ∈  ( ( Poly ‘ ℚ )  ∖  { 0𝑝 } ) ) | 
						
							| 48 | 22 | fveq1i | ⊢ ( Xp ‘ 𝐴 )  =  ( (  I   ↾  ℂ ) ‘ 𝐴 ) | 
						
							| 49 |  | fvresi | ⊢ ( 𝐴  ∈  ℂ  →  ( (  I   ↾  ℂ ) ‘ 𝐴 )  =  𝐴 ) | 
						
							| 50 | 48 49 | eqtrid | ⊢ ( 𝐴  ∈  ℂ  →  ( Xp ‘ 𝐴 )  =  𝐴 ) | 
						
							| 51 | 50 | adantl | ⊢ ( ( 𝐴  ∈  ℚ  ∧  𝐴  ∈  ℂ )  →  ( Xp ‘ 𝐴 )  =  𝐴 ) | 
						
							| 52 |  | fvconst2g | ⊢ ( ( 𝐴  ∈  ℚ  ∧  𝐴  ∈  ℂ )  →  ( ( ℂ  ×  { 𝐴 } ) ‘ 𝐴 )  =  𝐴 ) | 
						
							| 53 | 25 26 28 28 29 51 52 | ofval | ⊢ ( ( 𝐴  ∈  ℚ  ∧  𝐴  ∈  ℂ )  →  ( ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) ) ‘ 𝐴 )  =  ( 𝐴  −  𝐴 ) ) | 
						
							| 54 | 1 53 | mpdan | ⊢ ( 𝐴  ∈  ℚ  →  ( ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) ) ‘ 𝐴 )  =  ( 𝐴  −  𝐴 ) ) | 
						
							| 55 | 1 | subidd | ⊢ ( 𝐴  ∈  ℚ  →  ( 𝐴  −  𝐴 )  =  0 ) | 
						
							| 56 | 54 55 | eqtrd | ⊢ ( 𝐴  ∈  ℚ  →  ( ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) ) ‘ 𝐴 )  =  0 ) | 
						
							| 57 |  | fveq1 | ⊢ ( 𝑓  =  ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) )  →  ( 𝑓 ‘ 𝐴 )  =  ( ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) ) ‘ 𝐴 ) ) | 
						
							| 58 | 57 | eqeq1d | ⊢ ( 𝑓  =  ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) )  →  ( ( 𝑓 ‘ 𝐴 )  =  0  ↔  ( ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) ) ‘ 𝐴 )  =  0 ) ) | 
						
							| 59 | 58 | rspcev | ⊢ ( ( ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) )  ∈  ( ( Poly ‘ ℚ )  ∖  { 0𝑝 } )  ∧  ( ( Xp  ∘f   −  ( ℂ  ×  { 𝐴 } ) ) ‘ 𝐴 )  =  0 )  →  ∃ 𝑓  ∈  ( ( Poly ‘ ℚ )  ∖  { 0𝑝 } ) ( 𝑓 ‘ 𝐴 )  =  0 ) | 
						
							| 60 | 47 56 59 | syl2anc | ⊢ ( 𝐴  ∈  ℚ  →  ∃ 𝑓  ∈  ( ( Poly ‘ ℚ )  ∖  { 0𝑝 } ) ( 𝑓 ‘ 𝐴 )  =  0 ) | 
						
							| 61 |  | elqaa | ⊢ ( 𝐴  ∈  𝔸  ↔  ( 𝐴  ∈  ℂ  ∧  ∃ 𝑓  ∈  ( ( Poly ‘ ℚ )  ∖  { 0𝑝 } ) ( 𝑓 ‘ 𝐴 )  =  0 ) ) | 
						
							| 62 | 1 60 61 | sylanbrc | ⊢ ( 𝐴  ∈  ℚ  →  𝐴  ∈  𝔸 ) |