| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elq |
⊢ ( 𝐴 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |
| 2 |
|
elq |
⊢ ( 𝐵 ∈ ℚ ↔ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) |
| 3 |
|
nnz |
⊢ ( 𝑤 ∈ ℕ → 𝑤 ∈ ℤ ) |
| 4 |
|
zmulcl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑤 ∈ ℤ ) → ( 𝑥 · 𝑤 ) ∈ ℤ ) |
| 5 |
3 4
|
sylan2 |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑤 ∈ ℕ ) → ( 𝑥 · 𝑤 ) ∈ ℤ ) |
| 6 |
5
|
ad2ant2rl |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ) → ( 𝑥 · 𝑤 ) ∈ ℤ ) |
| 7 |
|
simpl |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) → 𝑧 ∈ ℤ ) |
| 8 |
|
nnz |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → 𝑦 ∈ ℤ ) |
| 10 |
|
zmulcl |
⊢ ( ( 𝑧 ∈ ℤ ∧ 𝑦 ∈ ℤ ) → ( 𝑧 · 𝑦 ) ∈ ℤ ) |
| 11 |
7 9 10
|
syl2anr |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ) → ( 𝑧 · 𝑦 ) ∈ ℤ ) |
| 12 |
6 11
|
zaddcld |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝑥 · 𝑤 ) + ( 𝑧 · 𝑦 ) ) ∈ ℤ ) |
| 13 |
12
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) → ( ( 𝑥 · 𝑤 ) + ( 𝑧 · 𝑦 ) ) ∈ ℤ ) |
| 14 |
|
nnmulcl |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) → ( 𝑦 · 𝑤 ) ∈ ℕ ) |
| 15 |
14
|
ad2ant2l |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ) → ( 𝑦 · 𝑤 ) ∈ ℕ ) |
| 16 |
15
|
adantr |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) → ( 𝑦 · 𝑤 ) ∈ ℕ ) |
| 17 |
|
oveq12 |
⊢ ( ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝐴 + 𝐵 ) = ( ( 𝑥 / 𝑦 ) + ( 𝑧 / 𝑤 ) ) ) |
| 18 |
|
zcn |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℂ ) |
| 19 |
|
zcn |
⊢ ( 𝑧 ∈ ℤ → 𝑧 ∈ ℂ ) |
| 20 |
18 19
|
anim12i |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) → ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ) |
| 21 |
|
nncn |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℂ ) |
| 22 |
|
nnne0 |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ≠ 0 ) |
| 23 |
21 22
|
jca |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ) |
| 24 |
|
nncn |
⊢ ( 𝑤 ∈ ℕ → 𝑤 ∈ ℂ ) |
| 25 |
|
nnne0 |
⊢ ( 𝑤 ∈ ℕ → 𝑤 ≠ 0 ) |
| 26 |
24 25
|
jca |
⊢ ( 𝑤 ∈ ℕ → ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) |
| 27 |
23 26
|
anim12i |
⊢ ( ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) → ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ) |
| 28 |
|
divadddiv |
⊢ ( ( ( 𝑥 ∈ ℂ ∧ 𝑧 ∈ ℂ ) ∧ ( ( 𝑦 ∈ ℂ ∧ 𝑦 ≠ 0 ) ∧ ( 𝑤 ∈ ℂ ∧ 𝑤 ≠ 0 ) ) ) → ( ( 𝑥 / 𝑦 ) + ( 𝑧 / 𝑤 ) ) = ( ( ( 𝑥 · 𝑤 ) + ( 𝑧 · 𝑦 ) ) / ( 𝑦 · 𝑤 ) ) ) |
| 29 |
20 27 28
|
syl2an |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑧 ∈ ℤ ) ∧ ( 𝑦 ∈ ℕ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝑥 / 𝑦 ) + ( 𝑧 / 𝑤 ) ) = ( ( ( 𝑥 · 𝑤 ) + ( 𝑧 · 𝑦 ) ) / ( 𝑦 · 𝑤 ) ) ) |
| 30 |
29
|
an4s |
⊢ ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ) → ( ( 𝑥 / 𝑦 ) + ( 𝑧 / 𝑤 ) ) = ( ( ( 𝑥 · 𝑤 ) + ( 𝑧 · 𝑦 ) ) / ( 𝑦 · 𝑤 ) ) ) |
| 31 |
17 30
|
sylan9eqr |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) → ( 𝐴 + 𝐵 ) = ( ( ( 𝑥 · 𝑤 ) + ( 𝑧 · 𝑦 ) ) / ( 𝑦 · 𝑤 ) ) ) |
| 32 |
|
rspceov |
⊢ ( ( ( ( 𝑥 · 𝑤 ) + ( 𝑧 · 𝑦 ) ) ∈ ℤ ∧ ( 𝑦 · 𝑤 ) ∈ ℕ ∧ ( 𝐴 + 𝐵 ) = ( ( ( 𝑥 · 𝑤 ) + ( 𝑧 · 𝑦 ) ) / ( 𝑦 · 𝑤 ) ) ) → ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℕ ( 𝐴 + 𝐵 ) = ( 𝑢 / 𝑣 ) ) |
| 33 |
|
elq |
⊢ ( ( 𝐴 + 𝐵 ) ∈ ℚ ↔ ∃ 𝑢 ∈ ℤ ∃ 𝑣 ∈ ℕ ( 𝐴 + 𝐵 ) = ( 𝑢 / 𝑣 ) ) |
| 34 |
32 33
|
sylibr |
⊢ ( ( ( ( 𝑥 · 𝑤 ) + ( 𝑧 · 𝑦 ) ) ∈ ℤ ∧ ( 𝑦 · 𝑤 ) ∈ ℕ ∧ ( 𝐴 + 𝐵 ) = ( ( ( 𝑥 · 𝑤 ) + ( 𝑧 · 𝑦 ) ) / ( 𝑦 · 𝑤 ) ) ) → ( 𝐴 + 𝐵 ) ∈ ℚ ) |
| 35 |
13 16 31 34
|
syl3anc |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ) ∧ ( 𝐴 = ( 𝑥 / 𝑦 ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) → ( 𝐴 + 𝐵 ) ∈ ℚ ) |
| 36 |
35
|
an4s |
⊢ ( ( ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ∧ 𝐴 = ( 𝑥 / 𝑦 ) ) ∧ ( ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) ∧ 𝐵 = ( 𝑧 / 𝑤 ) ) ) → ( 𝐴 + 𝐵 ) ∈ ℚ ) |
| 37 |
36
|
exp43 |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( 𝐴 = ( 𝑥 / 𝑦 ) → ( ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) → ( 𝐵 = ( 𝑧 / 𝑤 ) → ( 𝐴 + 𝐵 ) ∈ ℚ ) ) ) ) |
| 38 |
37
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) → ( ( 𝑧 ∈ ℤ ∧ 𝑤 ∈ ℕ ) → ( 𝐵 = ( 𝑧 / 𝑤 ) → ( 𝐴 + 𝐵 ) ∈ ℚ ) ) ) |
| 39 |
38
|
rexlimdvv |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) → ( ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) → ( 𝐴 + 𝐵 ) ∈ ℚ ) ) |
| 40 |
39
|
imp |
⊢ ( ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ∧ ∃ 𝑧 ∈ ℤ ∃ 𝑤 ∈ ℕ 𝐵 = ( 𝑧 / 𝑤 ) ) → ( 𝐴 + 𝐵 ) ∈ ℚ ) |
| 41 |
1 2 40
|
syl2anb |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ) → ( 𝐴 + 𝐵 ) ∈ ℚ ) |