Step |
Hyp |
Ref |
Expression |
1 |
|
elxr |
⊢ ( 𝐴 ∈ ℝ* ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
2 |
|
elxr |
⊢ ( 𝐵 ∈ ℝ* ↔ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) |
3 |
|
qbtwnre |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 < 𝐵 ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) |
4 |
3
|
3expia |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
5 |
|
simpl |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → 𝐴 ∈ ℝ ) |
6 |
|
peano2re |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 + 1 ) ∈ ℝ ) |
7 |
6
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → ( 𝐴 + 1 ) ∈ ℝ ) |
8 |
|
ltp1 |
⊢ ( 𝐴 ∈ ℝ → 𝐴 < ( 𝐴 + 1 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → 𝐴 < ( 𝐴 + 1 ) ) |
10 |
|
qbtwnre |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 + 1 ) ∈ ℝ ∧ 𝐴 < ( 𝐴 + 1 ) ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < ( 𝐴 + 1 ) ) ) |
11 |
5 7 9 10
|
syl3anc |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < ( 𝐴 + 1 ) ) ) |
12 |
|
qre |
⊢ ( 𝑥 ∈ ℚ → 𝑥 ∈ ℝ ) |
13 |
12
|
ltpnfd |
⊢ ( 𝑥 ∈ ℚ → 𝑥 < +∞ ) |
14 |
13
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) ∧ 𝑥 ∈ ℚ ) → 𝑥 < +∞ ) |
15 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) ∧ 𝑥 ∈ ℚ ) → 𝐵 = +∞ ) |
16 |
14 15
|
breqtrrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) ∧ 𝑥 ∈ ℚ ) → 𝑥 < 𝐵 ) |
17 |
16
|
a1d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) ∧ 𝑥 ∈ ℚ ) → ( 𝑥 < ( 𝐴 + 1 ) → 𝑥 < 𝐵 ) ) |
18 |
17
|
anim2d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) ∧ 𝑥 ∈ ℚ ) → ( ( 𝐴 < 𝑥 ∧ 𝑥 < ( 𝐴 + 1 ) ) → ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
19 |
18
|
reximdva |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → ( ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < ( 𝐴 + 1 ) ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
20 |
11 19
|
mpd |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) |
21 |
20
|
a1d |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = +∞ ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
22 |
|
rexr |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ* ) |
23 |
|
breq2 |
⊢ ( 𝐵 = -∞ → ( 𝐴 < 𝐵 ↔ 𝐴 < -∞ ) ) |
24 |
23
|
adantl |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 ↔ 𝐴 < -∞ ) ) |
25 |
|
nltmnf |
⊢ ( 𝐴 ∈ ℝ* → ¬ 𝐴 < -∞ ) |
26 |
25
|
adantr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 = -∞ ) → ¬ 𝐴 < -∞ ) |
27 |
26
|
pm2.21d |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 = -∞ ) → ( 𝐴 < -∞ → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
28 |
24 27
|
sylbid |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
29 |
22 28
|
sylan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
30 |
4 21 29
|
3jaodan |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
31 |
2 30
|
sylan2b |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
32 |
|
breq1 |
⊢ ( 𝐴 = +∞ → ( 𝐴 < 𝐵 ↔ +∞ < 𝐵 ) ) |
33 |
32
|
adantr |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 ↔ +∞ < 𝐵 ) ) |
34 |
|
pnfnlt |
⊢ ( 𝐵 ∈ ℝ* → ¬ +∞ < 𝐵 ) |
35 |
34
|
adantl |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ¬ +∞ < 𝐵 ) |
36 |
35
|
pm2.21d |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ( +∞ < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
37 |
33 36
|
sylbid |
⊢ ( ( 𝐴 = +∞ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
38 |
|
peano2rem |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 − 1 ) ∈ ℝ ) |
39 |
38
|
adantl |
⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 − 1 ) ∈ ℝ ) |
40 |
|
simpr |
⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → 𝐵 ∈ ℝ ) |
41 |
|
ltm1 |
⊢ ( 𝐵 ∈ ℝ → ( 𝐵 − 1 ) < 𝐵 ) |
42 |
41
|
adantl |
⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → ( 𝐵 − 1 ) < 𝐵 ) |
43 |
|
qbtwnre |
⊢ ( ( ( 𝐵 − 1 ) ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐵 − 1 ) < 𝐵 ) → ∃ 𝑥 ∈ ℚ ( ( 𝐵 − 1 ) < 𝑥 ∧ 𝑥 < 𝐵 ) ) |
44 |
39 40 42 43
|
syl3anc |
⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → ∃ 𝑥 ∈ ℚ ( ( 𝐵 − 1 ) < 𝑥 ∧ 𝑥 < 𝐵 ) ) |
45 |
|
simpll |
⊢ ( ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℚ ) → 𝐴 = -∞ ) |
46 |
12
|
adantl |
⊢ ( ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℚ ) → 𝑥 ∈ ℝ ) |
47 |
46
|
mnfltd |
⊢ ( ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℚ ) → -∞ < 𝑥 ) |
48 |
45 47
|
eqbrtrd |
⊢ ( ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℚ ) → 𝐴 < 𝑥 ) |
49 |
48
|
a1d |
⊢ ( ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℚ ) → ( ( 𝐵 − 1 ) < 𝑥 → 𝐴 < 𝑥 ) ) |
50 |
49
|
anim1d |
⊢ ( ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) ∧ 𝑥 ∈ ℚ ) → ( ( ( 𝐵 − 1 ) < 𝑥 ∧ 𝑥 < 𝐵 ) → ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
51 |
50
|
reximdva |
⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → ( ∃ 𝑥 ∈ ℚ ( ( 𝐵 − 1 ) < 𝑥 ∧ 𝑥 < 𝐵 ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
52 |
44 51
|
mpd |
⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) |
53 |
52
|
a1d |
⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
54 |
|
1re |
⊢ 1 ∈ ℝ |
55 |
|
mnflt |
⊢ ( 1 ∈ ℝ → -∞ < 1 ) |
56 |
54 55
|
ax-mp |
⊢ -∞ < 1 |
57 |
|
breq1 |
⊢ ( 𝐴 = -∞ → ( 𝐴 < 1 ↔ -∞ < 1 ) ) |
58 |
56 57
|
mpbiri |
⊢ ( 𝐴 = -∞ → 𝐴 < 1 ) |
59 |
|
ltpnf |
⊢ ( 1 ∈ ℝ → 1 < +∞ ) |
60 |
54 59
|
ax-mp |
⊢ 1 < +∞ |
61 |
|
breq2 |
⊢ ( 𝐵 = +∞ → ( 1 < 𝐵 ↔ 1 < +∞ ) ) |
62 |
60 61
|
mpbiri |
⊢ ( 𝐵 = +∞ → 1 < 𝐵 ) |
63 |
|
1z |
⊢ 1 ∈ ℤ |
64 |
|
zq |
⊢ ( 1 ∈ ℤ → 1 ∈ ℚ ) |
65 |
63 64
|
ax-mp |
⊢ 1 ∈ ℚ |
66 |
|
breq2 |
⊢ ( 𝑥 = 1 → ( 𝐴 < 𝑥 ↔ 𝐴 < 1 ) ) |
67 |
|
breq1 |
⊢ ( 𝑥 = 1 → ( 𝑥 < 𝐵 ↔ 1 < 𝐵 ) ) |
68 |
66 67
|
anbi12d |
⊢ ( 𝑥 = 1 → ( ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ↔ ( 𝐴 < 1 ∧ 1 < 𝐵 ) ) ) |
69 |
68
|
rspcev |
⊢ ( ( 1 ∈ ℚ ∧ ( 𝐴 < 1 ∧ 1 < 𝐵 ) ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) |
70 |
65 69
|
mpan |
⊢ ( ( 𝐴 < 1 ∧ 1 < 𝐵 ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) |
71 |
58 62 70
|
syl2an |
⊢ ( ( 𝐴 = -∞ ∧ 𝐵 = +∞ ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) |
72 |
71
|
a1d |
⊢ ( ( 𝐴 = -∞ ∧ 𝐵 = +∞ ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
73 |
|
3mix3 |
⊢ ( 𝐴 = -∞ → ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ) |
74 |
73 1
|
sylibr |
⊢ ( 𝐴 = -∞ → 𝐴 ∈ ℝ* ) |
75 |
74 28
|
sylan |
⊢ ( ( 𝐴 = -∞ ∧ 𝐵 = -∞ ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
76 |
53 72 75
|
3jaodan |
⊢ ( ( 𝐴 = -∞ ∧ ( 𝐵 ∈ ℝ ∨ 𝐵 = +∞ ∨ 𝐵 = -∞ ) ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
77 |
2 76
|
sylan2b |
⊢ ( ( 𝐴 = -∞ ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
78 |
31 37 77
|
3jaoian |
⊢ ( ( ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ∨ 𝐴 = -∞ ) ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
79 |
1 78
|
sylanb |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
80 |
79
|
3impia |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) |