| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qcvs.q | ⊢ 𝑄  =  ( ringLMod ‘ ( ℂfld  ↾s  ℚ ) ) | 
						
							| 2 |  | qsubdrg | ⊢ ( ℚ  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  ℚ )  ∈  DivRing ) | 
						
							| 3 |  | drngring | ⊢ ( ( ℂfld  ↾s  ℚ )  ∈  DivRing  →  ( ℂfld  ↾s  ℚ )  ∈  Ring ) | 
						
							| 4 | 3 | adantl | ⊢ ( ( ℚ  ∈  ( SubRing ‘ ℂfld )  ∧  ( ℂfld  ↾s  ℚ )  ∈  DivRing )  →  ( ℂfld  ↾s  ℚ )  ∈  Ring ) | 
						
							| 5 | 2 4 | ax-mp | ⊢ ( ℂfld  ↾s  ℚ )  ∈  Ring | 
						
							| 6 |  | rlmlmod | ⊢ ( ( ℂfld  ↾s  ℚ )  ∈  Ring  →  ( ringLMod ‘ ( ℂfld  ↾s  ℚ ) )  ∈  LMod ) | 
						
							| 7 | 5 6 | ax-mp | ⊢ ( ringLMod ‘ ( ℂfld  ↾s  ℚ ) )  ∈  LMod | 
						
							| 8 | 2 | simpri | ⊢ ( ℂfld  ↾s  ℚ )  ∈  DivRing | 
						
							| 9 |  | rlmsca | ⊢ ( ( ℂfld  ↾s  ℚ )  ∈  DivRing  →  ( ℂfld  ↾s  ℚ )  =  ( Scalar ‘ ( ringLMod ‘ ( ℂfld  ↾s  ℚ ) ) ) ) | 
						
							| 10 | 9 | eqcomd | ⊢ ( ( ℂfld  ↾s  ℚ )  ∈  DivRing  →  ( Scalar ‘ ( ringLMod ‘ ( ℂfld  ↾s  ℚ ) ) )  =  ( ℂfld  ↾s  ℚ ) ) | 
						
							| 11 | 8 10 | ax-mp | ⊢ ( Scalar ‘ ( ringLMod ‘ ( ℂfld  ↾s  ℚ ) ) )  =  ( ℂfld  ↾s  ℚ ) | 
						
							| 12 | 2 | simpli | ⊢ ℚ  ∈  ( SubRing ‘ ℂfld ) | 
						
							| 13 |  | eqid | ⊢ ( Scalar ‘ ( ringLMod ‘ ( ℂfld  ↾s  ℚ ) ) )  =  ( Scalar ‘ ( ringLMod ‘ ( ℂfld  ↾s  ℚ ) ) ) | 
						
							| 14 | 13 | isclmi | ⊢ ( ( ( ringLMod ‘ ( ℂfld  ↾s  ℚ ) )  ∈  LMod  ∧  ( Scalar ‘ ( ringLMod ‘ ( ℂfld  ↾s  ℚ ) ) )  =  ( ℂfld  ↾s  ℚ )  ∧  ℚ  ∈  ( SubRing ‘ ℂfld ) )  →  ( ringLMod ‘ ( ℂfld  ↾s  ℚ ) )  ∈  ℂMod ) | 
						
							| 15 | 7 11 12 14 | mp3an | ⊢ ( ringLMod ‘ ( ℂfld  ↾s  ℚ ) )  ∈  ℂMod | 
						
							| 16 |  | rlmlvec | ⊢ ( ( ℂfld  ↾s  ℚ )  ∈  DivRing  →  ( ringLMod ‘ ( ℂfld  ↾s  ℚ ) )  ∈  LVec ) | 
						
							| 17 | 8 16 | ax-mp | ⊢ ( ringLMod ‘ ( ℂfld  ↾s  ℚ ) )  ∈  LVec | 
						
							| 18 | 15 17 | elini | ⊢ ( ringLMod ‘ ( ℂfld  ↾s  ℚ ) )  ∈  ( ℂMod  ∩  LVec ) | 
						
							| 19 |  | df-cvs | ⊢ ℂVec  =  ( ℂMod  ∩  LVec ) | 
						
							| 20 | 18 1 19 | 3eltr4i | ⊢ 𝑄  ∈  ℂVec |