Step |
Hyp |
Ref |
Expression |
1 |
|
qcvs.q |
⊢ 𝑄 = ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) |
2 |
|
qsubdrg |
⊢ ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℚ ) ∈ DivRing ) |
3 |
|
drngring |
⊢ ( ( ℂfld ↾s ℚ ) ∈ DivRing → ( ℂfld ↾s ℚ ) ∈ Ring ) |
4 |
3
|
adantl |
⊢ ( ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s ℚ ) ∈ DivRing ) → ( ℂfld ↾s ℚ ) ∈ Ring ) |
5 |
2 4
|
ax-mp |
⊢ ( ℂfld ↾s ℚ ) ∈ Ring |
6 |
|
rlmlmod |
⊢ ( ( ℂfld ↾s ℚ ) ∈ Ring → ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ∈ LMod ) |
7 |
5 6
|
ax-mp |
⊢ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ∈ LMod |
8 |
2
|
simpri |
⊢ ( ℂfld ↾s ℚ ) ∈ DivRing |
9 |
|
rlmsca |
⊢ ( ( ℂfld ↾s ℚ ) ∈ DivRing → ( ℂfld ↾s ℚ ) = ( Scalar ‘ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ) ) |
10 |
9
|
eqcomd |
⊢ ( ( ℂfld ↾s ℚ ) ∈ DivRing → ( Scalar ‘ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ) = ( ℂfld ↾s ℚ ) ) |
11 |
8 10
|
ax-mp |
⊢ ( Scalar ‘ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ) = ( ℂfld ↾s ℚ ) |
12 |
2
|
simpli |
⊢ ℚ ∈ ( SubRing ‘ ℂfld ) |
13 |
|
eqid |
⊢ ( Scalar ‘ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ) = ( Scalar ‘ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ) |
14 |
13
|
isclmi |
⊢ ( ( ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ∈ LMod ∧ ( Scalar ‘ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ) = ( ℂfld ↾s ℚ ) ∧ ℚ ∈ ( SubRing ‘ ℂfld ) ) → ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ∈ ℂMod ) |
15 |
7 11 12 14
|
mp3an |
⊢ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ∈ ℂMod |
16 |
|
rlmlvec |
⊢ ( ( ℂfld ↾s ℚ ) ∈ DivRing → ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ∈ LVec ) |
17 |
8 16
|
ax-mp |
⊢ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ∈ LVec |
18 |
15 17
|
elini |
⊢ ( ringLMod ‘ ( ℂfld ↾s ℚ ) ) ∈ ( ℂMod ∩ LVec ) |
19 |
|
df-cvs |
⊢ ℂVec = ( ℂMod ∩ LVec ) |
20 |
18 1 19
|
3eltr4i |
⊢ 𝑄 ∈ ℂVec |