Metamath Proof Explorer


Theorem qcvs

Description: The field of rational numbers as left module over itself is a subcomplex vector space. The vector operation is + , and the scalar product is x. . (Contributed by AV, 22-Oct-2021)

Ref Expression
Hypothesis qcvs.q 𝑄 = ( ringLMod ‘ ( ℂflds ℚ ) )
Assertion qcvs 𝑄 ∈ ℂVec

Proof

Step Hyp Ref Expression
1 qcvs.q 𝑄 = ( ringLMod ‘ ( ℂflds ℚ ) )
2 qsubdrg ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds ℚ ) ∈ DivRing )
3 drngring ( ( ℂflds ℚ ) ∈ DivRing → ( ℂflds ℚ ) ∈ Ring )
4 3 adantl ( ( ℚ ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds ℚ ) ∈ DivRing ) → ( ℂflds ℚ ) ∈ Ring )
5 2 4 ax-mp ( ℂflds ℚ ) ∈ Ring
6 rlmlmod ( ( ℂflds ℚ ) ∈ Ring → ( ringLMod ‘ ( ℂflds ℚ ) ) ∈ LMod )
7 5 6 ax-mp ( ringLMod ‘ ( ℂflds ℚ ) ) ∈ LMod
8 2 simpri ( ℂflds ℚ ) ∈ DivRing
9 rlmsca ( ( ℂflds ℚ ) ∈ DivRing → ( ℂflds ℚ ) = ( Scalar ‘ ( ringLMod ‘ ( ℂflds ℚ ) ) ) )
10 9 eqcomd ( ( ℂflds ℚ ) ∈ DivRing → ( Scalar ‘ ( ringLMod ‘ ( ℂflds ℚ ) ) ) = ( ℂflds ℚ ) )
11 8 10 ax-mp ( Scalar ‘ ( ringLMod ‘ ( ℂflds ℚ ) ) ) = ( ℂflds ℚ )
12 2 simpli ℚ ∈ ( SubRing ‘ ℂfld )
13 eqid ( Scalar ‘ ( ringLMod ‘ ( ℂflds ℚ ) ) ) = ( Scalar ‘ ( ringLMod ‘ ( ℂflds ℚ ) ) )
14 13 isclmi ( ( ( ringLMod ‘ ( ℂflds ℚ ) ) ∈ LMod ∧ ( Scalar ‘ ( ringLMod ‘ ( ℂflds ℚ ) ) ) = ( ℂflds ℚ ) ∧ ℚ ∈ ( SubRing ‘ ℂfld ) ) → ( ringLMod ‘ ( ℂflds ℚ ) ) ∈ ℂMod )
15 7 11 12 14 mp3an ( ringLMod ‘ ( ℂflds ℚ ) ) ∈ ℂMod
16 rlmlvec ( ( ℂflds ℚ ) ∈ DivRing → ( ringLMod ‘ ( ℂflds ℚ ) ) ∈ LVec )
17 8 16 ax-mp ( ringLMod ‘ ( ℂflds ℚ ) ) ∈ LVec
18 15 17 elini ( ringLMod ‘ ( ℂflds ℚ ) ) ∈ ( ℂMod ∩ LVec )
19 df-cvs ℂVec = ( ℂMod ∩ LVec )
20 18 1 19 3eltr4i 𝑄 ∈ ℂVec