Metamath Proof Explorer


Theorem qdass

Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016)

Ref Expression
Assertion qdass ( { 𝐴 , 𝐵 } ∪ { 𝐶 , 𝐷 } ) = ( { 𝐴 , 𝐵 , 𝐶 } ∪ { 𝐷 } )

Proof

Step Hyp Ref Expression
1 unass ( ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ∪ { 𝐷 } ) = ( { 𝐴 , 𝐵 } ∪ ( { 𝐶 } ∪ { 𝐷 } ) )
2 df-tp { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } )
3 2 uneq1i ( { 𝐴 , 𝐵 , 𝐶 } ∪ { 𝐷 } ) = ( ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ∪ { 𝐷 } )
4 df-pr { 𝐶 , 𝐷 } = ( { 𝐶 } ∪ { 𝐷 } )
5 4 uneq2i ( { 𝐴 , 𝐵 } ∪ { 𝐶 , 𝐷 } ) = ( { 𝐴 , 𝐵 } ∪ ( { 𝐶 } ∪ { 𝐷 } ) )
6 1 3 5 3eqtr4ri ( { 𝐴 , 𝐵 } ∪ { 𝐶 , 𝐷 } ) = ( { 𝐴 , 𝐵 , 𝐶 } ∪ { 𝐷 } )