Metamath Proof Explorer


Theorem qdassr

Description: Two ways to write an unordered quadruple. (Contributed by Mario Carneiro, 5-Jan-2016)

Ref Expression
Assertion qdassr ( { 𝐴 , 𝐵 } ∪ { 𝐶 , 𝐷 } ) = ( { 𝐴 } ∪ { 𝐵 , 𝐶 , 𝐷 } )

Proof

Step Hyp Ref Expression
1 unass ( ( { 𝐴 } ∪ { 𝐵 } ) ∪ { 𝐶 , 𝐷 } ) = ( { 𝐴 } ∪ ( { 𝐵 } ∪ { 𝐶 , 𝐷 } ) )
2 df-pr { 𝐴 , 𝐵 } = ( { 𝐴 } ∪ { 𝐵 } )
3 2 uneq1i ( { 𝐴 , 𝐵 } ∪ { 𝐶 , 𝐷 } ) = ( ( { 𝐴 } ∪ { 𝐵 } ) ∪ { 𝐶 , 𝐷 } )
4 tpass { 𝐵 , 𝐶 , 𝐷 } = ( { 𝐵 } ∪ { 𝐶 , 𝐷 } )
5 4 uneq2i ( { 𝐴 } ∪ { 𝐵 , 𝐶 , 𝐷 } ) = ( { 𝐴 } ∪ ( { 𝐵 } ∪ { 𝐶 , 𝐷 } ) )
6 1 3 5 3eqtr4i ( { 𝐴 , 𝐵 } ∪ { 𝐶 , 𝐷 } ) = ( { 𝐴 } ∪ { 𝐵 , 𝐶 , 𝐷 } )