Step |
Hyp |
Ref |
Expression |
1 |
|
retop |
⊢ ( topGen ‘ ran (,) ) ∈ Top |
2 |
|
qssre |
⊢ ℚ ⊆ ℝ |
3 |
|
uniretop |
⊢ ℝ = ∪ ( topGen ‘ ran (,) ) |
4 |
3
|
clsss3 |
⊢ ( ( ( topGen ‘ ran (,) ) ∈ Top ∧ ℚ ⊆ ℝ ) → ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) ⊆ ℝ ) |
5 |
1 2 4
|
mp2an |
⊢ ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) ⊆ ℝ |
6 |
|
ioof |
⊢ (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ |
7 |
|
ffn |
⊢ ( (,) : ( ℝ* × ℝ* ) ⟶ 𝒫 ℝ → (,) Fn ( ℝ* × ℝ* ) ) |
8 |
|
ovelrn |
⊢ ( (,) Fn ( ℝ* × ℝ* ) → ( 𝑦 ∈ ran (,) ↔ ∃ 𝑧 ∈ ℝ* ∃ 𝑤 ∈ ℝ* 𝑦 = ( 𝑧 (,) 𝑤 ) ) ) |
9 |
6 7 8
|
mp2b |
⊢ ( 𝑦 ∈ ran (,) ↔ ∃ 𝑧 ∈ ℝ* ∃ 𝑤 ∈ ℝ* 𝑦 = ( 𝑧 (,) 𝑤 ) ) |
10 |
|
elioo3g |
⊢ ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) ↔ ( ( 𝑧 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) ∧ ( 𝑧 < 𝑥 ∧ 𝑥 < 𝑤 ) ) ) |
11 |
10
|
simplbi |
⊢ ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) → ( 𝑧 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) ) |
12 |
11
|
simp1d |
⊢ ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) → 𝑧 ∈ ℝ* ) |
13 |
12
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) ∧ 𝑦 ∈ ℚ ) ∧ ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) → 𝑧 ∈ ℝ* ) |
14 |
11
|
simp2d |
⊢ ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) → 𝑤 ∈ ℝ* ) |
15 |
14
|
ad2antrr |
⊢ ( ( ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) ∧ 𝑦 ∈ ℚ ) ∧ ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) → 𝑤 ∈ ℝ* ) |
16 |
|
qre |
⊢ ( 𝑦 ∈ ℚ → 𝑦 ∈ ℝ ) |
17 |
16
|
ad2antlr |
⊢ ( ( ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) ∧ 𝑦 ∈ ℚ ) ∧ ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) → 𝑦 ∈ ℝ ) |
18 |
17
|
rexrd |
⊢ ( ( ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) ∧ 𝑦 ∈ ℚ ) ∧ ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) → 𝑦 ∈ ℝ* ) |
19 |
13 15 18
|
3jca |
⊢ ( ( ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) ∧ 𝑦 ∈ ℚ ) ∧ ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) → ( 𝑧 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ) |
20 |
|
simpr |
⊢ ( ( ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) ∧ 𝑦 ∈ ℚ ) ∧ ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) → ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) |
21 |
|
elioo3g |
⊢ ( 𝑦 ∈ ( 𝑧 (,) 𝑤 ) ↔ ( ( 𝑧 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ∧ 𝑦 ∈ ℝ* ) ∧ ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) ) |
22 |
19 20 21
|
sylanbrc |
⊢ ( ( ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) ∧ 𝑦 ∈ ℚ ) ∧ ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) → 𝑦 ∈ ( 𝑧 (,) 𝑤 ) ) |
23 |
|
simplr |
⊢ ( ( ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) ∧ 𝑦 ∈ ℚ ) ∧ ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) → 𝑦 ∈ ℚ ) |
24 |
|
inelcm |
⊢ ( ( 𝑦 ∈ ( 𝑧 (,) 𝑤 ) ∧ 𝑦 ∈ ℚ ) → ( ( 𝑧 (,) 𝑤 ) ∩ ℚ ) ≠ ∅ ) |
25 |
22 23 24
|
syl2anc |
⊢ ( ( ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) ∧ 𝑦 ∈ ℚ ) ∧ ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) → ( ( 𝑧 (,) 𝑤 ) ∩ ℚ ) ≠ ∅ ) |
26 |
11
|
simp3d |
⊢ ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) → 𝑥 ∈ ℝ* ) |
27 |
|
eliooord |
⊢ ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) → ( 𝑧 < 𝑥 ∧ 𝑥 < 𝑤 ) ) |
28 |
27
|
simpld |
⊢ ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) → 𝑧 < 𝑥 ) |
29 |
27
|
simprd |
⊢ ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) → 𝑥 < 𝑤 ) |
30 |
12 26 14 28 29
|
xrlttrd |
⊢ ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) → 𝑧 < 𝑤 ) |
31 |
|
qbtwnxr |
⊢ ( ( 𝑧 ∈ ℝ* ∧ 𝑤 ∈ ℝ* ∧ 𝑧 < 𝑤 ) → ∃ 𝑦 ∈ ℚ ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) |
32 |
12 14 30 31
|
syl3anc |
⊢ ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) → ∃ 𝑦 ∈ ℚ ( 𝑧 < 𝑦 ∧ 𝑦 < 𝑤 ) ) |
33 |
25 32
|
r19.29a |
⊢ ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) → ( ( 𝑧 (,) 𝑤 ) ∩ ℚ ) ≠ ∅ ) |
34 |
33
|
a1i |
⊢ ( 𝑦 = ( 𝑧 (,) 𝑤 ) → ( 𝑥 ∈ ( 𝑧 (,) 𝑤 ) → ( ( 𝑧 (,) 𝑤 ) ∩ ℚ ) ≠ ∅ ) ) |
35 |
|
eleq2 |
⊢ ( 𝑦 = ( 𝑧 (,) 𝑤 ) → ( 𝑥 ∈ 𝑦 ↔ 𝑥 ∈ ( 𝑧 (,) 𝑤 ) ) ) |
36 |
|
ineq1 |
⊢ ( 𝑦 = ( 𝑧 (,) 𝑤 ) → ( 𝑦 ∩ ℚ ) = ( ( 𝑧 (,) 𝑤 ) ∩ ℚ ) ) |
37 |
36
|
neeq1d |
⊢ ( 𝑦 = ( 𝑧 (,) 𝑤 ) → ( ( 𝑦 ∩ ℚ ) ≠ ∅ ↔ ( ( 𝑧 (,) 𝑤 ) ∩ ℚ ) ≠ ∅ ) ) |
38 |
34 35 37
|
3imtr4d |
⊢ ( 𝑦 = ( 𝑧 (,) 𝑤 ) → ( 𝑥 ∈ 𝑦 → ( 𝑦 ∩ ℚ ) ≠ ∅ ) ) |
39 |
38
|
rexlimivw |
⊢ ( ∃ 𝑤 ∈ ℝ* 𝑦 = ( 𝑧 (,) 𝑤 ) → ( 𝑥 ∈ 𝑦 → ( 𝑦 ∩ ℚ ) ≠ ∅ ) ) |
40 |
39
|
rexlimivw |
⊢ ( ∃ 𝑧 ∈ ℝ* ∃ 𝑤 ∈ ℝ* 𝑦 = ( 𝑧 (,) 𝑤 ) → ( 𝑥 ∈ 𝑦 → ( 𝑦 ∩ ℚ ) ≠ ∅ ) ) |
41 |
9 40
|
sylbi |
⊢ ( 𝑦 ∈ ran (,) → ( 𝑥 ∈ 𝑦 → ( 𝑦 ∩ ℚ ) ≠ ∅ ) ) |
42 |
41
|
rgen |
⊢ ∀ 𝑦 ∈ ran (,) ( 𝑥 ∈ 𝑦 → ( 𝑦 ∩ ℚ ) ≠ ∅ ) |
43 |
|
eqidd |
⊢ ( 𝑥 ∈ ℝ → ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) ) |
44 |
3
|
a1i |
⊢ ( 𝑥 ∈ ℝ → ℝ = ∪ ( topGen ‘ ran (,) ) ) |
45 |
|
retopbas |
⊢ ran (,) ∈ TopBases |
46 |
45
|
a1i |
⊢ ( 𝑥 ∈ ℝ → ran (,) ∈ TopBases ) |
47 |
2
|
a1i |
⊢ ( 𝑥 ∈ ℝ → ℚ ⊆ ℝ ) |
48 |
|
id |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ℝ ) |
49 |
43 44 46 47 48
|
elcls3 |
⊢ ( 𝑥 ∈ ℝ → ( 𝑥 ∈ ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) ↔ ∀ 𝑦 ∈ ran (,) ( 𝑥 ∈ 𝑦 → ( 𝑦 ∩ ℚ ) ≠ ∅ ) ) ) |
50 |
42 49
|
mpbiri |
⊢ ( 𝑥 ∈ ℝ → 𝑥 ∈ ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) ) |
51 |
50
|
ssriv |
⊢ ℝ ⊆ ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) |
52 |
5 51
|
eqssi |
⊢ ( ( cls ‘ ( topGen ‘ ran (,) ) ) ‘ ℚ ) = ℝ |