Step |
Hyp |
Ref |
Expression |
1 |
|
qcn |
⊢ ( 𝐴 ∈ ℚ → 𝐴 ∈ ℂ ) |
2 |
|
qcn |
⊢ ( 𝐵 ∈ ℚ → 𝐵 ∈ ℂ ) |
3 |
|
id |
⊢ ( 𝐵 ≠ 0 → 𝐵 ≠ 0 ) |
4 |
|
divrec |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |
5 |
1 2 3 4
|
syl3an |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) = ( 𝐴 · ( 1 / 𝐵 ) ) ) |
6 |
|
qreccl |
⊢ ( ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) → ( 1 / 𝐵 ) ∈ ℚ ) |
7 |
|
qmulcl |
⊢ ( ( 𝐴 ∈ ℚ ∧ ( 1 / 𝐵 ) ∈ ℚ ) → ( 𝐴 · ( 1 / 𝐵 ) ) ∈ ℚ ) |
8 |
6 7
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℚ ∧ ( 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 · ( 1 / 𝐵 ) ) ∈ ℚ ) |
9 |
8
|
3impb |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) → ( 𝐴 · ( 1 / 𝐵 ) ) ∈ ℚ ) |
10 |
5 9
|
eqeltrd |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℚ ) |