| Step | Hyp | Ref | Expression | 
						
							| 1 |  | eqidd | ⊢ ( 𝐴  ∈  ℚ  →  ( numer ‘ 𝐴 )  =  ( numer ‘ 𝐴 ) ) | 
						
							| 2 |  | eqid | ⊢ ( denom ‘ 𝐴 )  =  ( denom ‘ 𝐴 ) | 
						
							| 3 | 1 2 | jctir | ⊢ ( 𝐴  ∈  ℚ  →  ( ( numer ‘ 𝐴 )  =  ( numer ‘ 𝐴 )  ∧  ( denom ‘ 𝐴 )  =  ( denom ‘ 𝐴 ) ) ) | 
						
							| 4 |  | qnumcl | ⊢ ( 𝐴  ∈  ℚ  →  ( numer ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 5 |  | qdencl | ⊢ ( 𝐴  ∈  ℚ  →  ( denom ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 6 |  | qnumdenbi | ⊢ ( ( 𝐴  ∈  ℚ  ∧  ( numer ‘ 𝐴 )  ∈  ℤ  ∧  ( denom ‘ 𝐴 )  ∈  ℕ )  →  ( ( ( ( numer ‘ 𝐴 )  gcd  ( denom ‘ 𝐴 ) )  =  1  ∧  𝐴  =  ( ( numer ‘ 𝐴 )  /  ( denom ‘ 𝐴 ) ) )  ↔  ( ( numer ‘ 𝐴 )  =  ( numer ‘ 𝐴 )  ∧  ( denom ‘ 𝐴 )  =  ( denom ‘ 𝐴 ) ) ) ) | 
						
							| 7 | 4 5 6 | mpd3an23 | ⊢ ( 𝐴  ∈  ℚ  →  ( ( ( ( numer ‘ 𝐴 )  gcd  ( denom ‘ 𝐴 ) )  =  1  ∧  𝐴  =  ( ( numer ‘ 𝐴 )  /  ( denom ‘ 𝐴 ) ) )  ↔  ( ( numer ‘ 𝐴 )  =  ( numer ‘ 𝐴 )  ∧  ( denom ‘ 𝐴 )  =  ( denom ‘ 𝐴 ) ) ) ) | 
						
							| 8 | 3 7 | mpbird | ⊢ ( 𝐴  ∈  ℚ  →  ( ( ( numer ‘ 𝐴 )  gcd  ( denom ‘ 𝐴 ) )  =  1  ∧  𝐴  =  ( ( numer ‘ 𝐴 )  /  ( denom ‘ 𝐴 ) ) ) ) | 
						
							| 9 | 8 | simprd | ⊢ ( 𝐴  ∈  ℚ  →  𝐴  =  ( ( numer ‘ 𝐴 )  /  ( denom ‘ 𝐴 ) ) ) |