Metamath Proof Explorer


Theorem qexALT

Description: Alternate proof of qex . (Contributed by NM, 30-Jul-2004) (Revised by Mario Carneiro, 16-Jun-2013) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion qexALT ℚ ∈ V

Proof

Step Hyp Ref Expression
1 elq ( 𝑥 ∈ ℚ ↔ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℕ 𝑥 = ( 𝑦 / 𝑧 ) )
2 eqid ( 𝑦 ∈ ℤ , 𝑧 ∈ ℕ ↦ ( 𝑦 / 𝑧 ) ) = ( 𝑦 ∈ ℤ , 𝑧 ∈ ℕ ↦ ( 𝑦 / 𝑧 ) )
3 ovex ( 𝑦 / 𝑧 ) ∈ V
4 2 3 elrnmpo ( 𝑥 ∈ ran ( 𝑦 ∈ ℤ , 𝑧 ∈ ℕ ↦ ( 𝑦 / 𝑧 ) ) ↔ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℕ 𝑥 = ( 𝑦 / 𝑧 ) )
5 1 4 bitr4i ( 𝑥 ∈ ℚ ↔ 𝑥 ∈ ran ( 𝑦 ∈ ℤ , 𝑧 ∈ ℕ ↦ ( 𝑦 / 𝑧 ) ) )
6 5 eqriv ℚ = ran ( 𝑦 ∈ ℤ , 𝑧 ∈ ℕ ↦ ( 𝑦 / 𝑧 ) )
7 zexALT ℤ ∈ V
8 nnexALT ℕ ∈ V
9 7 8 mpoex ( 𝑦 ∈ ℤ , 𝑧 ∈ ℕ ↦ ( 𝑦 / 𝑧 ) ) ∈ V
10 9 rnex ran ( 𝑦 ∈ ℤ , 𝑧 ∈ ℕ ↦ ( 𝑦 / 𝑧 ) ) ∈ V
11 6 10 eqeltri ℚ ∈ V