| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elq |
⊢ ( 𝑥 ∈ ℚ ↔ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℕ 𝑥 = ( 𝑦 / 𝑧 ) ) |
| 2 |
|
eqid |
⊢ ( 𝑦 ∈ ℤ , 𝑧 ∈ ℕ ↦ ( 𝑦 / 𝑧 ) ) = ( 𝑦 ∈ ℤ , 𝑧 ∈ ℕ ↦ ( 𝑦 / 𝑧 ) ) |
| 3 |
|
ovex |
⊢ ( 𝑦 / 𝑧 ) ∈ V |
| 4 |
2 3
|
elrnmpo |
⊢ ( 𝑥 ∈ ran ( 𝑦 ∈ ℤ , 𝑧 ∈ ℕ ↦ ( 𝑦 / 𝑧 ) ) ↔ ∃ 𝑦 ∈ ℤ ∃ 𝑧 ∈ ℕ 𝑥 = ( 𝑦 / 𝑧 ) ) |
| 5 |
1 4
|
bitr4i |
⊢ ( 𝑥 ∈ ℚ ↔ 𝑥 ∈ ran ( 𝑦 ∈ ℤ , 𝑧 ∈ ℕ ↦ ( 𝑦 / 𝑧 ) ) ) |
| 6 |
5
|
eqriv |
⊢ ℚ = ran ( 𝑦 ∈ ℤ , 𝑧 ∈ ℕ ↦ ( 𝑦 / 𝑧 ) ) |
| 7 |
|
zexALT |
⊢ ℤ ∈ V |
| 8 |
|
nnexALT |
⊢ ℕ ∈ V |
| 9 |
7 8
|
mpoex |
⊢ ( 𝑦 ∈ ℤ , 𝑧 ∈ ℕ ↦ ( 𝑦 / 𝑧 ) ) ∈ V |
| 10 |
9
|
rnex |
⊢ ran ( 𝑦 ∈ ℤ , 𝑧 ∈ ℕ ↦ ( 𝑦 / 𝑧 ) ) ∈ V |
| 11 |
6 10
|
eqeltri |
⊢ ℚ ∈ V |