Description: Closure of integer exponentiation of rational numbers. (Contributed by Mario Carneiro, 9-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qexpclz | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℚ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | qsscn | ⊢ ℚ ⊆ ℂ | |
| 2 | qmulcl | ⊢ ( ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) → ( 𝑥 · 𝑦 ) ∈ ℚ ) | |
| 3 | 1z | ⊢ 1 ∈ ℤ | |
| 4 | zq | ⊢ ( 1 ∈ ℤ → 1 ∈ ℚ ) | |
| 5 | 3 4 | ax-mp | ⊢ 1 ∈ ℚ |
| 6 | qreccl | ⊢ ( ( 𝑥 ∈ ℚ ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ ℚ ) | |
| 7 | 1 2 5 6 | expcl2lem | ⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴 ↑ 𝑁 ) ∈ ℚ ) |