Metamath Proof Explorer


Theorem qexpclz

Description: Closure of exponentiation of rational numbers. (Contributed by Mario Carneiro, 9-Sep-2014)

Ref Expression
Assertion qexpclz ( ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴𝑁 ) ∈ ℚ )

Proof

Step Hyp Ref Expression
1 qsscn ℚ ⊆ ℂ
2 qmulcl ( ( 𝑥 ∈ ℚ ∧ 𝑦 ∈ ℚ ) → ( 𝑥 · 𝑦 ) ∈ ℚ )
3 1z 1 ∈ ℤ
4 zq ( 1 ∈ ℤ → 1 ∈ ℚ )
5 3 4 ax-mp 1 ∈ ℚ
6 qreccl ( ( 𝑥 ∈ ℚ ∧ 𝑥 ≠ 0 ) → ( 1 / 𝑥 ) ∈ ℚ )
7 1 2 5 6 expcl2lem ( ( 𝐴 ∈ ℚ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ ) → ( 𝐴𝑁 ) ∈ ℚ )