| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qbtwnxr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) |
| 2 |
1
|
3expia |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) ) |
| 3 |
|
simprl |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → 𝐴 < 𝑥 ) |
| 4 |
|
simplll |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
| 5 |
|
qre |
⊢ ( 𝑥 ∈ ℚ → 𝑥 ∈ ℝ ) |
| 6 |
5
|
rexrd |
⊢ ( 𝑥 ∈ ℚ → 𝑥 ∈ ℝ* ) |
| 7 |
6
|
ad2antlr |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → 𝑥 ∈ ℝ* ) |
| 8 |
|
xrltnle |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝑥 ∈ ℝ* ) → ( 𝐴 < 𝑥 ↔ ¬ 𝑥 ≤ 𝐴 ) ) |
| 9 |
4 7 8
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ( 𝐴 < 𝑥 ↔ ¬ 𝑥 ≤ 𝐴 ) ) |
| 10 |
3 9
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ¬ 𝑥 ≤ 𝐴 ) |
| 11 |
|
xrltle |
⊢ ( ( 𝑥 ∈ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝑥 < 𝐴 → 𝑥 ≤ 𝐴 ) ) |
| 12 |
7 4 11
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ( 𝑥 < 𝐴 → 𝑥 ≤ 𝐴 ) ) |
| 13 |
10 12
|
mtod |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ¬ 𝑥 < 𝐴 ) |
| 14 |
|
simprr |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → 𝑥 < 𝐵 ) |
| 15 |
13 14
|
2thd |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ( ¬ 𝑥 < 𝐴 ↔ 𝑥 < 𝐵 ) ) |
| 16 |
|
nbbn |
⊢ ( ( ¬ 𝑥 < 𝐴 ↔ 𝑥 < 𝐵 ) ↔ ¬ ( 𝑥 < 𝐴 ↔ 𝑥 < 𝐵 ) ) |
| 17 |
15 16
|
sylib |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ¬ ( 𝑥 < 𝐴 ↔ 𝑥 < 𝐵 ) ) |
| 18 |
|
simpllr |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
| 19 |
7 18 14
|
xrltled |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → 𝑥 ≤ 𝐵 ) |
| 20 |
10 19
|
2thd |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ( ¬ 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) |
| 21 |
|
nbbn |
⊢ ( ( ¬ 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ↔ ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) |
| 22 |
20 21
|
sylib |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) |
| 23 |
17 22
|
jca |
⊢ ( ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) ∧ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) ) → ( ¬ ( 𝑥 < 𝐴 ↔ 𝑥 < 𝐵 ) ∧ ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) ) |
| 24 |
23
|
ex |
⊢ ( ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) ∧ 𝑥 ∈ ℚ ) → ( ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) → ( ¬ ( 𝑥 < 𝐴 ↔ 𝑥 < 𝐵 ) ∧ ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) ) ) |
| 25 |
24
|
reximdva |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ∃ 𝑥 ∈ ℚ ( 𝐴 < 𝑥 ∧ 𝑥 < 𝐵 ) → ∃ 𝑥 ∈ ℚ ( ¬ ( 𝑥 < 𝐴 ↔ 𝑥 < 𝐵 ) ∧ ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) ) ) |
| 26 |
2 25
|
syld |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( 𝐴 < 𝐵 → ∃ 𝑥 ∈ ℚ ( ¬ ( 𝑥 < 𝐴 ↔ 𝑥 < 𝐵 ) ∧ ¬ ( 𝑥 ≤ 𝐴 ↔ 𝑥 ≤ 𝐵 ) ) ) ) |