Metamath Proof Explorer


Theorem qgt0numnn

Description: A rational is positive iff its canonical numerator is a positive integer. (Contributed by Stefan O'Rear, 15-Sep-2014)

Ref Expression
Assertion qgt0numnn ( ( 𝐴 ∈ ℚ ∧ 0 < 𝐴 ) → ( numer ‘ 𝐴 ) ∈ ℕ )

Proof

Step Hyp Ref Expression
1 qnumcl ( 𝐴 ∈ ℚ → ( numer ‘ 𝐴 ) ∈ ℤ )
2 1 adantr ( ( 𝐴 ∈ ℚ ∧ 0 < 𝐴 ) → ( numer ‘ 𝐴 ) ∈ ℤ )
3 qnumgt0 ( 𝐴 ∈ ℚ → ( 0 < 𝐴 ↔ 0 < ( numer ‘ 𝐴 ) ) )
4 3 biimpa ( ( 𝐴 ∈ ℚ ∧ 0 < 𝐴 ) → 0 < ( numer ‘ 𝐴 ) )
5 elnnz ( ( numer ‘ 𝐴 ) ∈ ℕ ↔ ( ( numer ‘ 𝐴 ) ∈ ℤ ∧ 0 < ( numer ‘ 𝐴 ) ) )
6 2 4 5 sylanbrc ( ( 𝐴 ∈ ℚ ∧ 0 < 𝐴 ) → ( numer ‘ 𝐴 ) ∈ ℕ )