Description: A rational is positive iff its canonical numerator is a positive integer. (Contributed by Stefan O'Rear, 15-Sep-2014)
Ref | Expression | ||
---|---|---|---|
Assertion | qgt0numnn | ⊢ ( ( 𝐴 ∈ ℚ ∧ 0 < 𝐴 ) → ( numer ‘ 𝐴 ) ∈ ℕ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qnumcl | ⊢ ( 𝐴 ∈ ℚ → ( numer ‘ 𝐴 ) ∈ ℤ ) | |
2 | 1 | adantr | ⊢ ( ( 𝐴 ∈ ℚ ∧ 0 < 𝐴 ) → ( numer ‘ 𝐴 ) ∈ ℤ ) |
3 | qnumgt0 | ⊢ ( 𝐴 ∈ ℚ → ( 0 < 𝐴 ↔ 0 < ( numer ‘ 𝐴 ) ) ) | |
4 | 3 | biimpa | ⊢ ( ( 𝐴 ∈ ℚ ∧ 0 < 𝐴 ) → 0 < ( numer ‘ 𝐴 ) ) |
5 | elnnz | ⊢ ( ( numer ‘ 𝐴 ) ∈ ℕ ↔ ( ( numer ‘ 𝐴 ) ∈ ℤ ∧ 0 < ( numer ‘ 𝐴 ) ) ) | |
6 | 2 4 5 | sylanbrc | ⊢ ( ( 𝐴 ∈ ℚ ∧ 0 < 𝐴 ) → ( numer ‘ 𝐴 ) ∈ ℕ ) |