Step |
Hyp |
Ref |
Expression |
1 |
|
qinioo.a |
⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) |
2 |
|
qinioo.b |
⊢ ( 𝜑 → 𝐵 ∈ ℝ* ) |
3 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ ( ℚ ∩ ( 𝐴 (,) 𝐵 ) ) = ∅ ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ( ℚ ∩ ( 𝐴 (,) 𝐵 ) ) = ∅ ) |
4 |
1 2
|
xrltnled |
⊢ ( 𝜑 → ( 𝐴 < 𝐵 ↔ ¬ 𝐵 ≤ 𝐴 ) ) |
5 |
4
|
biimpar |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝐴 ) → 𝐴 < 𝐵 ) |
6 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ* ) |
7 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ* ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) |
9 |
|
qbtwnxr |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ∧ 𝐴 < 𝐵 ) → ∃ 𝑞 ∈ ℚ ( 𝐴 < 𝑞 ∧ 𝑞 < 𝐵 ) ) |
10 |
6 7 8 9
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → ∃ 𝑞 ∈ ℚ ( 𝐴 < 𝑞 ∧ 𝑞 < 𝐵 ) ) |
11 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℚ ) ∧ ( 𝐴 < 𝑞 ∧ 𝑞 < 𝐵 ) ) → 𝐴 ∈ ℝ* ) |
12 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℚ ) ∧ ( 𝐴 < 𝑞 ∧ 𝑞 < 𝐵 ) ) → 𝐵 ∈ ℝ* ) |
13 |
|
qre |
⊢ ( 𝑞 ∈ ℚ → 𝑞 ∈ ℝ ) |
14 |
13
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℚ ) ∧ ( 𝐴 < 𝑞 ∧ 𝑞 < 𝐵 ) ) → 𝑞 ∈ ℝ ) |
15 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℚ ) ∧ ( 𝐴 < 𝑞 ∧ 𝑞 < 𝐵 ) ) → 𝐴 < 𝑞 ) |
16 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℚ ) ∧ ( 𝐴 < 𝑞 ∧ 𝑞 < 𝐵 ) ) → 𝑞 < 𝐵 ) |
17 |
11 12 14 15 16
|
eliood |
⊢ ( ( ( 𝜑 ∧ 𝑞 ∈ ℚ ) ∧ ( 𝐴 < 𝑞 ∧ 𝑞 < 𝐵 ) ) → 𝑞 ∈ ( 𝐴 (,) 𝐵 ) ) |
18 |
17
|
ex |
⊢ ( ( 𝜑 ∧ 𝑞 ∈ ℚ ) → ( ( 𝐴 < 𝑞 ∧ 𝑞 < 𝐵 ) → 𝑞 ∈ ( 𝐴 (,) 𝐵 ) ) ) |
19 |
18
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 < 𝐵 ) ∧ 𝑞 ∈ ℚ ) → ( ( 𝐴 < 𝑞 ∧ 𝑞 < 𝐵 ) → 𝑞 ∈ ( 𝐴 (,) 𝐵 ) ) ) |
20 |
19
|
reximdva |
⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → ( ∃ 𝑞 ∈ ℚ ( 𝐴 < 𝑞 ∧ 𝑞 < 𝐵 ) → ∃ 𝑞 ∈ ℚ 𝑞 ∈ ( 𝐴 (,) 𝐵 ) ) ) |
21 |
10 20
|
mpd |
⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → ∃ 𝑞 ∈ ℚ 𝑞 ∈ ( 𝐴 (,) 𝐵 ) ) |
22 |
|
inn0 |
⊢ ( ( ℚ ∩ ( 𝐴 (,) 𝐵 ) ) ≠ ∅ ↔ ∃ 𝑞 ∈ ℚ 𝑞 ∈ ( 𝐴 (,) 𝐵 ) ) |
23 |
21 22
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝐴 < 𝐵 ) → ( ℚ ∩ ( 𝐴 (,) 𝐵 ) ) ≠ ∅ ) |
24 |
5 23
|
syldan |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝐴 ) → ( ℚ ∩ ( 𝐴 (,) 𝐵 ) ) ≠ ∅ ) |
25 |
24
|
neneqd |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 ≤ 𝐴 ) → ¬ ( ℚ ∩ ( 𝐴 (,) 𝐵 ) ) = ∅ ) |
26 |
25
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ( ℚ ∩ ( 𝐴 (,) 𝐵 ) ) = ∅ ) ∧ ¬ 𝐵 ≤ 𝐴 ) → ¬ ( ℚ ∩ ( 𝐴 (,) 𝐵 ) ) = ∅ ) |
27 |
3 26
|
condan |
⊢ ( ( 𝜑 ∧ ( ℚ ∩ ( 𝐴 (,) 𝐵 ) ) = ∅ ) → 𝐵 ≤ 𝐴 ) |
28 |
|
ioo0 |
⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐵 ∈ ℝ* ) → ( ( 𝐴 (,) 𝐵 ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) |
29 |
1 2 28
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐴 (,) 𝐵 ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) |
30 |
29
|
biimpar |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → ( 𝐴 (,) 𝐵 ) = ∅ ) |
31 |
|
ineq2 |
⊢ ( ( 𝐴 (,) 𝐵 ) = ∅ → ( ℚ ∩ ( 𝐴 (,) 𝐵 ) ) = ( ℚ ∩ ∅ ) ) |
32 |
|
in0 |
⊢ ( ℚ ∩ ∅ ) = ∅ |
33 |
31 32
|
eqtrdi |
⊢ ( ( 𝐴 (,) 𝐵 ) = ∅ → ( ℚ ∩ ( 𝐴 (,) 𝐵 ) ) = ∅ ) |
34 |
30 33
|
syl |
⊢ ( ( 𝜑 ∧ 𝐵 ≤ 𝐴 ) → ( ℚ ∩ ( 𝐴 (,) 𝐵 ) ) = ∅ ) |
35 |
27 34
|
impbida |
⊢ ( 𝜑 → ( ( ℚ ∩ ( 𝐴 (,) 𝐵 ) ) = ∅ ↔ 𝐵 ≤ 𝐴 ) ) |