Step |
Hyp |
Ref |
Expression |
1 |
|
eldifn |
⊢ ( 𝐴 ∈ ( ℂ ∖ ℚ ) → ¬ 𝐴 ∈ ℚ ) |
2 |
1
|
3ad2ant1 |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) → ¬ 𝐴 ∈ ℚ ) |
3 |
2
|
adantr |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → ¬ 𝐴 ∈ ℚ ) |
4 |
|
simpll1 |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → 𝐴 ∈ ( ℂ ∖ ℚ ) ) |
5 |
4
|
eldifad |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → 𝐴 ∈ ℂ ) |
6 |
|
simp2r |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) → 𝐶 ∈ ℚ ) |
7 |
6
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → 𝐶 ∈ ℚ ) |
8 |
|
qcn |
⊢ ( 𝐶 ∈ ℚ → 𝐶 ∈ ℂ ) |
9 |
7 8
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → 𝐶 ∈ ℂ ) |
10 |
|
simp3r |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) → 𝐸 ∈ ℚ ) |
11 |
10
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → 𝐸 ∈ ℚ ) |
12 |
|
qcn |
⊢ ( 𝐸 ∈ ℚ → 𝐸 ∈ ℂ ) |
13 |
11 12
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → 𝐸 ∈ ℂ ) |
14 |
5 9 13
|
subdid |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( 𝐴 · ( 𝐶 − 𝐸 ) ) = ( ( 𝐴 · 𝐶 ) − ( 𝐴 · 𝐸 ) ) ) |
15 |
|
qsubcl |
⊢ ( ( 𝐶 ∈ ℚ ∧ 𝐸 ∈ ℚ ) → ( 𝐶 − 𝐸 ) ∈ ℚ ) |
16 |
7 11 15
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( 𝐶 − 𝐸 ) ∈ ℚ ) |
17 |
|
qcn |
⊢ ( ( 𝐶 − 𝐸 ) ∈ ℚ → ( 𝐶 − 𝐸 ) ∈ ℂ ) |
18 |
16 17
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( 𝐶 − 𝐸 ) ∈ ℂ ) |
19 |
18 5
|
mulcomd |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( ( 𝐶 − 𝐸 ) · 𝐴 ) = ( 𝐴 · ( 𝐶 − 𝐸 ) ) ) |
20 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) |
21 |
|
simp2l |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) → 𝐵 ∈ ℚ ) |
22 |
21
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → 𝐵 ∈ ℚ ) |
23 |
|
qcn |
⊢ ( 𝐵 ∈ ℚ → 𝐵 ∈ ℂ ) |
24 |
22 23
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → 𝐵 ∈ ℂ ) |
25 |
5 9
|
mulcld |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( 𝐴 · 𝐶 ) ∈ ℂ ) |
26 |
|
simp3l |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) → 𝐷 ∈ ℚ ) |
27 |
26
|
ad2antrr |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → 𝐷 ∈ ℚ ) |
28 |
|
qcn |
⊢ ( 𝐷 ∈ ℚ → 𝐷 ∈ ℂ ) |
29 |
27 28
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → 𝐷 ∈ ℂ ) |
30 |
5 13
|
mulcld |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( 𝐴 · 𝐸 ) ∈ ℂ ) |
31 |
24 25 29 30
|
addsubeq4d |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ↔ ( 𝐷 − 𝐵 ) = ( ( 𝐴 · 𝐶 ) − ( 𝐴 · 𝐸 ) ) ) ) |
32 |
20 31
|
mpbid |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( 𝐷 − 𝐵 ) = ( ( 𝐴 · 𝐶 ) − ( 𝐴 · 𝐸 ) ) ) |
33 |
14 19 32
|
3eqtr4d |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( ( 𝐶 − 𝐸 ) · 𝐴 ) = ( 𝐷 − 𝐵 ) ) |
34 |
|
qsubcl |
⊢ ( ( 𝐷 ∈ ℚ ∧ 𝐵 ∈ ℚ ) → ( 𝐷 − 𝐵 ) ∈ ℚ ) |
35 |
27 22 34
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( 𝐷 − 𝐵 ) ∈ ℚ ) |
36 |
|
qcn |
⊢ ( ( 𝐷 − 𝐵 ) ∈ ℚ → ( 𝐷 − 𝐵 ) ∈ ℂ ) |
37 |
35 36
|
syl |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( 𝐷 − 𝐵 ) ∈ ℂ ) |
38 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ¬ 𝐶 = 𝐸 ) |
39 |
|
subeq0 |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐸 ∈ ℂ ) → ( ( 𝐶 − 𝐸 ) = 0 ↔ 𝐶 = 𝐸 ) ) |
40 |
39
|
necon3abid |
⊢ ( ( 𝐶 ∈ ℂ ∧ 𝐸 ∈ ℂ ) → ( ( 𝐶 − 𝐸 ) ≠ 0 ↔ ¬ 𝐶 = 𝐸 ) ) |
41 |
9 13 40
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( ( 𝐶 − 𝐸 ) ≠ 0 ↔ ¬ 𝐶 = 𝐸 ) ) |
42 |
38 41
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( 𝐶 − 𝐸 ) ≠ 0 ) |
43 |
37 18 5 42
|
divmuld |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( ( ( 𝐷 − 𝐵 ) / ( 𝐶 − 𝐸 ) ) = 𝐴 ↔ ( ( 𝐶 − 𝐸 ) · 𝐴 ) = ( 𝐷 − 𝐵 ) ) ) |
44 |
33 43
|
mpbird |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( ( 𝐷 − 𝐵 ) / ( 𝐶 − 𝐸 ) ) = 𝐴 ) |
45 |
|
qdivcl |
⊢ ( ( ( 𝐷 − 𝐵 ) ∈ ℚ ∧ ( 𝐶 − 𝐸 ) ∈ ℚ ∧ ( 𝐶 − 𝐸 ) ≠ 0 ) → ( ( 𝐷 − 𝐵 ) / ( 𝐶 − 𝐸 ) ) ∈ ℚ ) |
46 |
35 16 42 45
|
syl3anc |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → ( ( 𝐷 − 𝐵 ) / ( 𝐶 − 𝐸 ) ) ∈ ℚ ) |
47 |
44 46
|
eqeltrrd |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ ¬ 𝐶 = 𝐸 ) → 𝐴 ∈ ℚ ) |
48 |
47
|
ex |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → ( ¬ 𝐶 = 𝐸 → 𝐴 ∈ ℚ ) ) |
49 |
3 48
|
mt3d |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → 𝐶 = 𝐸 ) |
50 |
|
simpl2l |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → 𝐵 ∈ ℚ ) |
51 |
50 23
|
syl |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → 𝐵 ∈ ℂ ) |
52 |
51
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ 𝐶 = 𝐸 ) → 𝐵 ∈ ℂ ) |
53 |
|
simpl3l |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → 𝐷 ∈ ℚ ) |
54 |
53 28
|
syl |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → 𝐷 ∈ ℂ ) |
55 |
54
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ 𝐶 = 𝐸 ) → 𝐷 ∈ ℂ ) |
56 |
|
simpl1 |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → 𝐴 ∈ ( ℂ ∖ ℚ ) ) |
57 |
56
|
eldifad |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → 𝐴 ∈ ℂ ) |
58 |
|
simpl3r |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → 𝐸 ∈ ℚ ) |
59 |
58 12
|
syl |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → 𝐸 ∈ ℂ ) |
60 |
57 59
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → ( 𝐴 · 𝐸 ) ∈ ℂ ) |
61 |
60
|
adantr |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ 𝐶 = 𝐸 ) → ( 𝐴 · 𝐸 ) ∈ ℂ ) |
62 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ 𝐶 = 𝐸 ) → 𝐶 = 𝐸 ) |
63 |
62
|
eqcomd |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ 𝐶 = 𝐸 ) → 𝐸 = 𝐶 ) |
64 |
63
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ 𝐶 = 𝐸 ) → ( 𝐴 · 𝐸 ) = ( 𝐴 · 𝐶 ) ) |
65 |
64
|
oveq2d |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ 𝐶 = 𝐸 ) → ( 𝐵 + ( 𝐴 · 𝐸 ) ) = ( 𝐵 + ( 𝐴 · 𝐶 ) ) ) |
66 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ 𝐶 = 𝐸 ) → ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) |
67 |
65 66
|
eqtrd |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ 𝐶 = 𝐸 ) → ( 𝐵 + ( 𝐴 · 𝐸 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) |
68 |
52 55 61 67
|
addcan2ad |
⊢ ( ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) ∧ 𝐶 = 𝐸 ) → 𝐵 = 𝐷 ) |
69 |
68
|
ex |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → ( 𝐶 = 𝐸 → 𝐵 = 𝐷 ) ) |
70 |
49 69
|
jcai |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → ( 𝐶 = 𝐸 ∧ 𝐵 = 𝐷 ) ) |
71 |
70
|
ancomd |
⊢ ( ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) ∧ ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) → ( 𝐵 = 𝐷 ∧ 𝐶 = 𝐸 ) ) |
72 |
71
|
ex |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) → ( ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) → ( 𝐵 = 𝐷 ∧ 𝐶 = 𝐸 ) ) ) |
73 |
|
id |
⊢ ( 𝐵 = 𝐷 → 𝐵 = 𝐷 ) |
74 |
|
oveq2 |
⊢ ( 𝐶 = 𝐸 → ( 𝐴 · 𝐶 ) = ( 𝐴 · 𝐸 ) ) |
75 |
73 74
|
oveqan12d |
⊢ ( ( 𝐵 = 𝐷 ∧ 𝐶 = 𝐸 ) → ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ) |
76 |
72 75
|
impbid1 |
⊢ ( ( 𝐴 ∈ ( ℂ ∖ ℚ ) ∧ ( 𝐵 ∈ ℚ ∧ 𝐶 ∈ ℚ ) ∧ ( 𝐷 ∈ ℚ ∧ 𝐸 ∈ ℚ ) ) → ( ( 𝐵 + ( 𝐴 · 𝐶 ) ) = ( 𝐷 + ( 𝐴 · 𝐸 ) ) ↔ ( 𝐵 = 𝐷 ∧ 𝐶 = 𝐸 ) ) ) |