Step |
Hyp |
Ref |
Expression |
1 |
|
qlift.1 |
⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 ) |
2 |
|
qlift.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) |
3 |
|
qlift.3 |
⊢ ( 𝜑 → 𝑅 Er 𝑋 ) |
4 |
|
qlift.4 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
5 |
1 2 3 4
|
qliftlem |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → [ 𝑥 ] 𝑅 ∈ ( 𝑋 / 𝑅 ) ) |
6 |
1 5 2
|
fliftel |
⊢ ( 𝜑 → ( [ 𝐶 ] 𝑅 𝐹 𝐷 ↔ ∃ 𝑥 ∈ 𝑋 ( [ 𝐶 ] 𝑅 = [ 𝑥 ] 𝑅 ∧ 𝐷 = 𝐴 ) ) ) |
7 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑅 Er 𝑋 ) |
8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
9 |
7 8
|
erth2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐶 𝑅 𝑥 ↔ [ 𝐶 ] 𝑅 = [ 𝑥 ] 𝑅 ) ) |
10 |
9
|
anbi1d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐶 𝑅 𝑥 ∧ 𝐷 = 𝐴 ) ↔ ( [ 𝐶 ] 𝑅 = [ 𝑥 ] 𝑅 ∧ 𝐷 = 𝐴 ) ) ) |
11 |
10
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑥 ∈ 𝑋 ( 𝐶 𝑅 𝑥 ∧ 𝐷 = 𝐴 ) ↔ ∃ 𝑥 ∈ 𝑋 ( [ 𝐶 ] 𝑅 = [ 𝑥 ] 𝑅 ∧ 𝐷 = 𝐴 ) ) ) |
12 |
6 11
|
bitr4d |
⊢ ( 𝜑 → ( [ 𝐶 ] 𝑅 𝐹 𝐷 ↔ ∃ 𝑥 ∈ 𝑋 ( 𝐶 𝑅 𝑥 ∧ 𝐷 = 𝐴 ) ) ) |