| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qlift.1 | ⊢ 𝐹  =  ran  ( 𝑥  ∈  𝑋  ↦  〈 [ 𝑥 ] 𝑅 ,  𝐴 〉 ) | 
						
							| 2 |  | qlift.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  𝑌 ) | 
						
							| 3 |  | qlift.3 | ⊢ ( 𝜑  →  𝑅  Er  𝑋 ) | 
						
							| 4 |  | qlift.4 | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 5 | 1 2 3 4 | qliftlem | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  [ 𝑥 ] 𝑅  ∈  ( 𝑋  /  𝑅 ) ) | 
						
							| 6 | 1 5 2 | fliftel | ⊢ ( 𝜑  →  ( [ 𝐶 ] 𝑅 𝐹 𝐷  ↔  ∃ 𝑥  ∈  𝑋 ( [ 𝐶 ] 𝑅  =  [ 𝑥 ] 𝑅  ∧  𝐷  =  𝐴 ) ) ) | 
						
							| 7 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝑅  Er  𝑋 ) | 
						
							| 8 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝑥  ∈  𝑋 ) | 
						
							| 9 | 7 8 | erth2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( 𝐶 𝑅 𝑥  ↔  [ 𝐶 ] 𝑅  =  [ 𝑥 ] 𝑅 ) ) | 
						
							| 10 | 9 | anbi1d | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  ( ( 𝐶 𝑅 𝑥  ∧  𝐷  =  𝐴 )  ↔  ( [ 𝐶 ] 𝑅  =  [ 𝑥 ] 𝑅  ∧  𝐷  =  𝐴 ) ) ) | 
						
							| 11 | 10 | rexbidva | ⊢ ( 𝜑  →  ( ∃ 𝑥  ∈  𝑋 ( 𝐶 𝑅 𝑥  ∧  𝐷  =  𝐴 )  ↔  ∃ 𝑥  ∈  𝑋 ( [ 𝐶 ] 𝑅  =  [ 𝑥 ] 𝑅  ∧  𝐷  =  𝐴 ) ) ) | 
						
							| 12 | 6 11 | bitr4d | ⊢ ( 𝜑  →  ( [ 𝐶 ] 𝑅 𝐹 𝐷  ↔  ∃ 𝑥  ∈  𝑋 ( 𝐶 𝑅 𝑥  ∧  𝐷  =  𝐴 ) ) ) |