| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qlift.1 | ⊢ 𝐹  =  ran  ( 𝑥  ∈  𝑋  ↦  〈 [ 𝑥 ] 𝑅 ,  𝐴 〉 ) | 
						
							| 2 |  | qlift.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  𝑌 ) | 
						
							| 3 |  | qlift.3 | ⊢ ( 𝜑  →  𝑅  Er  𝑋 ) | 
						
							| 4 |  | qlift.4 | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 5 | 1 2 3 4 | qliftlem | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  [ 𝑥 ] 𝑅  ∈  ( 𝑋  /  𝑅 ) ) | 
						
							| 6 | 1 5 2 | fliftf | ⊢ ( 𝜑  →  ( Fun  𝐹  ↔  𝐹 : ran  ( 𝑥  ∈  𝑋  ↦  [ 𝑥 ] 𝑅 ) ⟶ 𝑌 ) ) | 
						
							| 7 |  | df-qs | ⊢ ( 𝑋  /  𝑅 )  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝑋 𝑦  =  [ 𝑥 ] 𝑅 } | 
						
							| 8 |  | eqid | ⊢ ( 𝑥  ∈  𝑋  ↦  [ 𝑥 ] 𝑅 )  =  ( 𝑥  ∈  𝑋  ↦  [ 𝑥 ] 𝑅 ) | 
						
							| 9 | 8 | rnmpt | ⊢ ran  ( 𝑥  ∈  𝑋  ↦  [ 𝑥 ] 𝑅 )  =  { 𝑦  ∣  ∃ 𝑥  ∈  𝑋 𝑦  =  [ 𝑥 ] 𝑅 } | 
						
							| 10 | 7 9 | eqtr4i | ⊢ ( 𝑋  /  𝑅 )  =  ran  ( 𝑥  ∈  𝑋  ↦  [ 𝑥 ] 𝑅 ) | 
						
							| 11 | 10 | a1i | ⊢ ( 𝜑  →  ( 𝑋  /  𝑅 )  =  ran  ( 𝑥  ∈  𝑋  ↦  [ 𝑥 ] 𝑅 ) ) | 
						
							| 12 | 11 | feq2d | ⊢ ( 𝜑  →  ( 𝐹 : ( 𝑋  /  𝑅 ) ⟶ 𝑌  ↔  𝐹 : ran  ( 𝑥  ∈  𝑋  ↦  [ 𝑥 ] 𝑅 ) ⟶ 𝑌 ) ) | 
						
							| 13 | 6 12 | bitr4d | ⊢ ( 𝜑  →  ( Fun  𝐹  ↔  𝐹 : ( 𝑋  /  𝑅 ) ⟶ 𝑌 ) ) |