Step |
Hyp |
Ref |
Expression |
1 |
|
qlift.1 |
⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 ) |
2 |
|
qlift.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) |
3 |
|
qlift.3 |
⊢ ( 𝜑 → 𝑅 Er 𝑋 ) |
4 |
|
qlift.4 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
5 |
|
qliftfun.4 |
⊢ ( 𝑥 = 𝑦 → 𝐴 = 𝐵 ) |
6 |
1 2 3 4
|
qliftlem |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → [ 𝑥 ] 𝑅 ∈ ( 𝑋 / 𝑅 ) ) |
7 |
|
eceq1 |
⊢ ( 𝑥 = 𝑦 → [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) |
8 |
1 6 2 7 5
|
fliftfun |
⊢ ( 𝜑 → ( Fun 𝐹 ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 → 𝐴 = 𝐵 ) ) ) |
9 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → 𝑅 Er 𝑋 ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → 𝑥 𝑅 𝑦 ) |
11 |
9 10
|
ercl |
⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → 𝑥 ∈ 𝑋 ) |
12 |
9 10
|
ercl2 |
⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → 𝑦 ∈ 𝑋 ) |
13 |
11 12
|
jca |
⊢ ( ( 𝜑 ∧ 𝑥 𝑅 𝑦 ) → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) |
14 |
13
|
ex |
⊢ ( 𝜑 → ( 𝑥 𝑅 𝑦 → ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) ) |
15 |
14
|
pm4.71rd |
⊢ ( 𝜑 → ( 𝑥 𝑅 𝑦 ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑅 𝑦 ) ) ) |
16 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑅 Er 𝑋 ) |
17 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → 𝑥 ∈ 𝑋 ) |
18 |
16 17
|
erth |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ) → ( 𝑥 𝑅 𝑦 ↔ [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) ) |
19 |
18
|
pm5.32da |
⊢ ( 𝜑 → ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ 𝑥 𝑅 𝑦 ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) ) ) |
20 |
15 19
|
bitrd |
⊢ ( 𝜑 → ( 𝑥 𝑅 𝑦 ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) ) ) |
21 |
20
|
imbi1d |
⊢ ( 𝜑 → ( ( 𝑥 𝑅 𝑦 → 𝐴 = 𝐵 ) ↔ ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) → 𝐴 = 𝐵 ) ) ) |
22 |
|
impexp |
⊢ ( ( ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) ∧ [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) → 𝐴 = 𝐵 ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 → 𝐴 = 𝐵 ) ) ) |
23 |
21 22
|
bitrdi |
⊢ ( 𝜑 → ( ( 𝑥 𝑅 𝑦 → 𝐴 = 𝐵 ) ↔ ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 → 𝐴 = 𝐵 ) ) ) ) |
24 |
23
|
2albidv |
⊢ ( 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝐴 = 𝐵 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 → 𝐴 = 𝐵 ) ) ) ) |
25 |
|
r2al |
⊢ ( ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 → 𝐴 = 𝐵 ) ↔ ∀ 𝑥 ∀ 𝑦 ( ( 𝑥 ∈ 𝑋 ∧ 𝑦 ∈ 𝑋 ) → ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 → 𝐴 = 𝐵 ) ) ) |
26 |
24 25
|
bitr4di |
⊢ ( 𝜑 → ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝐴 = 𝐵 ) ↔ ∀ 𝑥 ∈ 𝑋 ∀ 𝑦 ∈ 𝑋 ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 → 𝐴 = 𝐵 ) ) ) |
27 |
8 26
|
bitr4d |
⊢ ( 𝜑 → ( Fun 𝐹 ↔ ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦 → 𝐴 = 𝐵 ) ) ) |