| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qlift.1 | ⊢ 𝐹  =  ran  ( 𝑥  ∈  𝑋  ↦  〈 [ 𝑥 ] 𝑅 ,  𝐴 〉 ) | 
						
							| 2 |  | qlift.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  𝑌 ) | 
						
							| 3 |  | qlift.3 | ⊢ ( 𝜑  →  𝑅  Er  𝑋 ) | 
						
							| 4 |  | qlift.4 | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 5 |  | qliftfun.4 | ⊢ ( 𝑥  =  𝑦  →  𝐴  =  𝐵 ) | 
						
							| 6 | 1 2 3 4 | qliftlem | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  [ 𝑥 ] 𝑅  ∈  ( 𝑋  /  𝑅 ) ) | 
						
							| 7 |  | eceq1 | ⊢ ( 𝑥  =  𝑦  →  [ 𝑥 ] 𝑅  =  [ 𝑦 ] 𝑅 ) | 
						
							| 8 | 1 6 2 7 5 | fliftfun | ⊢ ( 𝜑  →  ( Fun  𝐹  ↔  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( [ 𝑥 ] 𝑅  =  [ 𝑦 ] 𝑅  →  𝐴  =  𝐵 ) ) ) | 
						
							| 9 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑥 𝑅 𝑦 )  →  𝑅  Er  𝑋 ) | 
						
							| 10 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥 𝑅 𝑦 )  →  𝑥 𝑅 𝑦 ) | 
						
							| 11 | 9 10 | ercl | ⊢ ( ( 𝜑  ∧  𝑥 𝑅 𝑦 )  →  𝑥  ∈  𝑋 ) | 
						
							| 12 | 9 10 | ercl2 | ⊢ ( ( 𝜑  ∧  𝑥 𝑅 𝑦 )  →  𝑦  ∈  𝑋 ) | 
						
							| 13 | 11 12 | jca | ⊢ ( ( 𝜑  ∧  𝑥 𝑅 𝑦 )  →  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) ) | 
						
							| 14 | 13 | ex | ⊢ ( 𝜑  →  ( 𝑥 𝑅 𝑦  →  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) ) ) | 
						
							| 15 | 14 | pm4.71rd | ⊢ ( 𝜑  →  ( 𝑥 𝑅 𝑦  ↔  ( ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  ∧  𝑥 𝑅 𝑦 ) ) ) | 
						
							| 16 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  𝑅  Er  𝑋 ) | 
						
							| 17 |  | simprl | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  𝑥  ∈  𝑋 ) | 
						
							| 18 | 16 17 | erth | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 ) )  →  ( 𝑥 𝑅 𝑦  ↔  [ 𝑥 ] 𝑅  =  [ 𝑦 ] 𝑅 ) ) | 
						
							| 19 | 18 | pm5.32da | ⊢ ( 𝜑  →  ( ( ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  ∧  𝑥 𝑅 𝑦 )  ↔  ( ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  ∧  [ 𝑥 ] 𝑅  =  [ 𝑦 ] 𝑅 ) ) ) | 
						
							| 20 | 15 19 | bitrd | ⊢ ( 𝜑  →  ( 𝑥 𝑅 𝑦  ↔  ( ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  ∧  [ 𝑥 ] 𝑅  =  [ 𝑦 ] 𝑅 ) ) ) | 
						
							| 21 | 20 | imbi1d | ⊢ ( 𝜑  →  ( ( 𝑥 𝑅 𝑦  →  𝐴  =  𝐵 )  ↔  ( ( ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  ∧  [ 𝑥 ] 𝑅  =  [ 𝑦 ] 𝑅 )  →  𝐴  =  𝐵 ) ) ) | 
						
							| 22 |  | impexp | ⊢ ( ( ( ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  ∧  [ 𝑥 ] 𝑅  =  [ 𝑦 ] 𝑅 )  →  𝐴  =  𝐵 )  ↔  ( ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( [ 𝑥 ] 𝑅  =  [ 𝑦 ] 𝑅  →  𝐴  =  𝐵 ) ) ) | 
						
							| 23 | 21 22 | bitrdi | ⊢ ( 𝜑  →  ( ( 𝑥 𝑅 𝑦  →  𝐴  =  𝐵 )  ↔  ( ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( [ 𝑥 ] 𝑅  =  [ 𝑦 ] 𝑅  →  𝐴  =  𝐵 ) ) ) ) | 
						
							| 24 | 23 | 2albidv | ⊢ ( 𝜑  →  ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦  →  𝐴  =  𝐵 )  ↔  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( [ 𝑥 ] 𝑅  =  [ 𝑦 ] 𝑅  →  𝐴  =  𝐵 ) ) ) ) | 
						
							| 25 |  | r2al | ⊢ ( ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( [ 𝑥 ] 𝑅  =  [ 𝑦 ] 𝑅  →  𝐴  =  𝐵 )  ↔  ∀ 𝑥 ∀ 𝑦 ( ( 𝑥  ∈  𝑋  ∧  𝑦  ∈  𝑋 )  →  ( [ 𝑥 ] 𝑅  =  [ 𝑦 ] 𝑅  →  𝐴  =  𝐵 ) ) ) | 
						
							| 26 | 24 25 | bitr4di | ⊢ ( 𝜑  →  ( ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦  →  𝐴  =  𝐵 )  ↔  ∀ 𝑥  ∈  𝑋 ∀ 𝑦  ∈  𝑋 ( [ 𝑥 ] 𝑅  =  [ 𝑦 ] 𝑅  →  𝐴  =  𝐵 ) ) ) | 
						
							| 27 | 8 26 | bitr4d | ⊢ ( 𝜑  →  ( Fun  𝐹  ↔  ∀ 𝑥 ∀ 𝑦 ( 𝑥 𝑅 𝑦  →  𝐴  =  𝐵 ) ) ) |