Metamath Proof Explorer


Theorem qliftfuns

Description: The function F is the unique function defined by F[ x ] = A , provided that the well-definedness condition holds. (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)

Ref Expression
Hypotheses qlift.1 𝐹 = ran ( 𝑥𝑋 ↦ ⟨ [ 𝑥 ] 𝑅 , 𝐴 ⟩ )
qlift.2 ( ( 𝜑𝑥𝑋 ) → 𝐴𝑌 )
qlift.3 ( 𝜑𝑅 Er 𝑋 )
qlift.4 ( 𝜑𝑋𝑉 )
Assertion qliftfuns ( 𝜑 → ( Fun 𝐹 ↔ ∀ 𝑦𝑧 ( 𝑦 𝑅 𝑧 𝑦 / 𝑥 𝐴 = 𝑧 / 𝑥 𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 qlift.1 𝐹 = ran ( 𝑥𝑋 ↦ ⟨ [ 𝑥 ] 𝑅 , 𝐴 ⟩ )
2 qlift.2 ( ( 𝜑𝑥𝑋 ) → 𝐴𝑌 )
3 qlift.3 ( 𝜑𝑅 Er 𝑋 )
4 qlift.4 ( 𝜑𝑋𝑉 )
5 nfcv 𝑦 ⟨ [ 𝑥 ] 𝑅 , 𝐴
6 nfcv 𝑥 [ 𝑦 ] 𝑅
7 nfcsb1v 𝑥 𝑦 / 𝑥 𝐴
8 6 7 nfop 𝑥 ⟨ [ 𝑦 ] 𝑅 , 𝑦 / 𝑥 𝐴
9 eceq1 ( 𝑥 = 𝑦 → [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 )
10 csbeq1a ( 𝑥 = 𝑦𝐴 = 𝑦 / 𝑥 𝐴 )
11 9 10 opeq12d ( 𝑥 = 𝑦 → ⟨ [ 𝑥 ] 𝑅 , 𝐴 ⟩ = ⟨ [ 𝑦 ] 𝑅 , 𝑦 / 𝑥 𝐴 ⟩ )
12 5 8 11 cbvmpt ( 𝑥𝑋 ↦ ⟨ [ 𝑥 ] 𝑅 , 𝐴 ⟩ ) = ( 𝑦𝑋 ↦ ⟨ [ 𝑦 ] 𝑅 , 𝑦 / 𝑥 𝐴 ⟩ )
13 12 rneqi ran ( 𝑥𝑋 ↦ ⟨ [ 𝑥 ] 𝑅 , 𝐴 ⟩ ) = ran ( 𝑦𝑋 ↦ ⟨ [ 𝑦 ] 𝑅 , 𝑦 / 𝑥 𝐴 ⟩ )
14 1 13 eqtri 𝐹 = ran ( 𝑦𝑋 ↦ ⟨ [ 𝑦 ] 𝑅 , 𝑦 / 𝑥 𝐴 ⟩ )
15 2 ralrimiva ( 𝜑 → ∀ 𝑥𝑋 𝐴𝑌 )
16 7 nfel1 𝑥 𝑦 / 𝑥 𝐴𝑌
17 10 eleq1d ( 𝑥 = 𝑦 → ( 𝐴𝑌 𝑦 / 𝑥 𝐴𝑌 ) )
18 16 17 rspc ( 𝑦𝑋 → ( ∀ 𝑥𝑋 𝐴𝑌 𝑦 / 𝑥 𝐴𝑌 ) )
19 15 18 mpan9 ( ( 𝜑𝑦𝑋 ) → 𝑦 / 𝑥 𝐴𝑌 )
20 csbeq1 ( 𝑦 = 𝑧 𝑦 / 𝑥 𝐴 = 𝑧 / 𝑥 𝐴 )
21 14 19 3 4 20 qliftfun ( 𝜑 → ( Fun 𝐹 ↔ ∀ 𝑦𝑧 ( 𝑦 𝑅 𝑧 𝑦 / 𝑥 𝐴 = 𝑧 / 𝑥 𝐴 ) ) )