Step |
Hyp |
Ref |
Expression |
1 |
|
qlift.1 |
⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 ) |
2 |
|
qlift.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) |
3 |
|
qlift.3 |
⊢ ( 𝜑 → 𝑅 Er 𝑋 ) |
4 |
|
qlift.4 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
5 |
|
nfcv |
⊢ Ⅎ 𝑦 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 |
6 |
|
nfcv |
⊢ Ⅎ 𝑥 [ 𝑦 ] 𝑅 |
7 |
|
nfcsb1v |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 |
8 |
6 7
|
nfop |
⊢ Ⅎ 𝑥 〈 [ 𝑦 ] 𝑅 , ⦋ 𝑦 / 𝑥 ⦌ 𝐴 〉 |
9 |
|
eceq1 |
⊢ ( 𝑥 = 𝑦 → [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ) |
10 |
|
csbeq1a |
⊢ ( 𝑥 = 𝑦 → 𝐴 = ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ) |
11 |
9 10
|
opeq12d |
⊢ ( 𝑥 = 𝑦 → 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 = 〈 [ 𝑦 ] 𝑅 , ⦋ 𝑦 / 𝑥 ⦌ 𝐴 〉 ) |
12 |
5 8 11
|
cbvmpt |
⊢ ( 𝑥 ∈ 𝑋 ↦ 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 ) = ( 𝑦 ∈ 𝑋 ↦ 〈 [ 𝑦 ] 𝑅 , ⦋ 𝑦 / 𝑥 ⦌ 𝐴 〉 ) |
13 |
12
|
rneqi |
⊢ ran ( 𝑥 ∈ 𝑋 ↦ 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 ) = ran ( 𝑦 ∈ 𝑋 ↦ 〈 [ 𝑦 ] 𝑅 , ⦋ 𝑦 / 𝑥 ⦌ 𝐴 〉 ) |
14 |
1 13
|
eqtri |
⊢ 𝐹 = ran ( 𝑦 ∈ 𝑋 ↦ 〈 [ 𝑦 ] 𝑅 , ⦋ 𝑦 / 𝑥 ⦌ 𝐴 〉 ) |
15 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑋 𝐴 ∈ 𝑌 ) |
16 |
7
|
nfel1 |
⊢ Ⅎ 𝑥 ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ 𝑌 |
17 |
10
|
eleq1d |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ∈ 𝑌 ↔ ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ 𝑌 ) ) |
18 |
16 17
|
rspc |
⊢ ( 𝑦 ∈ 𝑋 → ( ∀ 𝑥 ∈ 𝑋 𝐴 ∈ 𝑌 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ 𝑌 ) ) |
19 |
15 18
|
mpan9 |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑋 ) → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 ∈ 𝑌 ) |
20 |
|
csbeq1 |
⊢ ( 𝑦 = 𝑧 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) |
21 |
14 19 3 4 20
|
qliftfun |
⊢ ( 𝜑 → ( Fun 𝐹 ↔ ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑅 𝑧 → ⦋ 𝑦 / 𝑥 ⦌ 𝐴 = ⦋ 𝑧 / 𝑥 ⦌ 𝐴 ) ) ) |