| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qlift.1 | ⊢ 𝐹  =  ran  ( 𝑥  ∈  𝑋  ↦  〈 [ 𝑥 ] 𝑅 ,  𝐴 〉 ) | 
						
							| 2 |  | qlift.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  𝑌 ) | 
						
							| 3 |  | qlift.3 | ⊢ ( 𝜑  →  𝑅  Er  𝑋 ) | 
						
							| 4 |  | qlift.4 | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 5 |  | nfcv | ⊢ Ⅎ 𝑦 〈 [ 𝑥 ] 𝑅 ,  𝐴 〉 | 
						
							| 6 |  | nfcv | ⊢ Ⅎ 𝑥 [ 𝑦 ] 𝑅 | 
						
							| 7 |  | nfcsb1v | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐴 | 
						
							| 8 | 6 7 | nfop | ⊢ Ⅎ 𝑥 〈 [ 𝑦 ] 𝑅 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 〉 | 
						
							| 9 |  | eceq1 | ⊢ ( 𝑥  =  𝑦  →  [ 𝑥 ] 𝑅  =  [ 𝑦 ] 𝑅 ) | 
						
							| 10 |  | csbeq1a | ⊢ ( 𝑥  =  𝑦  →  𝐴  =  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 ) | 
						
							| 11 | 9 10 | opeq12d | ⊢ ( 𝑥  =  𝑦  →  〈 [ 𝑥 ] 𝑅 ,  𝐴 〉  =  〈 [ 𝑦 ] 𝑅 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 〉 ) | 
						
							| 12 | 5 8 11 | cbvmpt | ⊢ ( 𝑥  ∈  𝑋  ↦  〈 [ 𝑥 ] 𝑅 ,  𝐴 〉 )  =  ( 𝑦  ∈  𝑋  ↦  〈 [ 𝑦 ] 𝑅 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 〉 ) | 
						
							| 13 | 12 | rneqi | ⊢ ran  ( 𝑥  ∈  𝑋  ↦  〈 [ 𝑥 ] 𝑅 ,  𝐴 〉 )  =  ran  ( 𝑦  ∈  𝑋  ↦  〈 [ 𝑦 ] 𝑅 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 〉 ) | 
						
							| 14 | 1 13 | eqtri | ⊢ 𝐹  =  ran  ( 𝑦  ∈  𝑋  ↦  〈 [ 𝑦 ] 𝑅 ,  ⦋ 𝑦  /  𝑥 ⦌ 𝐴 〉 ) | 
						
							| 15 | 2 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝑋 𝐴  ∈  𝑌 ) | 
						
							| 16 | 7 | nfel1 | ⊢ Ⅎ 𝑥 ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  𝑌 | 
						
							| 17 | 10 | eleq1d | ⊢ ( 𝑥  =  𝑦  →  ( 𝐴  ∈  𝑌  ↔  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  𝑌 ) ) | 
						
							| 18 | 16 17 | rspc | ⊢ ( 𝑦  ∈  𝑋  →  ( ∀ 𝑥  ∈  𝑋 𝐴  ∈  𝑌  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  𝑌 ) ) | 
						
							| 19 | 15 18 | mpan9 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝑋 )  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  ∈  𝑌 ) | 
						
							| 20 |  | csbeq1 | ⊢ ( 𝑦  =  𝑧  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐴 ) | 
						
							| 21 | 14 19 3 4 20 | qliftfun | ⊢ ( 𝜑  →  ( Fun  𝐹  ↔  ∀ 𝑦 ∀ 𝑧 ( 𝑦 𝑅 𝑧  →  ⦋ 𝑦  /  𝑥 ⦌ 𝐴  =  ⦋ 𝑧  /  𝑥 ⦌ 𝐴 ) ) ) |