Description: Lemma for theorems about a function lift. (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qlift.1 | ⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 ) | |
qlift.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) | ||
qlift.3 | ⊢ ( 𝜑 → 𝑅 Er 𝑋 ) | ||
qlift.4 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
Assertion | qliftlem | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → [ 𝑥 ] 𝑅 ∈ ( 𝑋 / 𝑅 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.1 | ⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 ) | |
2 | qlift.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) | |
3 | qlift.3 | ⊢ ( 𝜑 → 𝑅 Er 𝑋 ) | |
4 | qlift.4 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
5 | erex | ⊢ ( 𝑅 Er 𝑋 → ( 𝑋 ∈ 𝑉 → 𝑅 ∈ V ) ) | |
6 | 3 4 5 | sylc | ⊢ ( 𝜑 → 𝑅 ∈ V ) |
7 | ecelqsg | ⊢ ( ( 𝑅 ∈ V ∧ 𝑥 ∈ 𝑋 ) → [ 𝑥 ] 𝑅 ∈ ( 𝑋 / 𝑅 ) ) | |
8 | 6 7 | sylan | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → [ 𝑥 ] 𝑅 ∈ ( 𝑋 / 𝑅 ) ) |