Metamath Proof Explorer
		
		
		
		Description:  F , a function lift, is a subset of R X. S .  (Contributed by Mario Carneiro, 23-Dec-2016)  (Revised by AV, 3-Aug-2024)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | qlift.1 | ⊢ 𝐹  =  ran  ( 𝑥  ∈  𝑋  ↦  〈 [ 𝑥 ] 𝑅 ,  𝐴 〉 ) | 
					
						|  |  | qlift.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  𝑌 ) | 
					
						|  |  | qlift.3 | ⊢ ( 𝜑  →  𝑅  Er  𝑋 ) | 
					
						|  |  | qlift.4 | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
				
					|  | Assertion | qliftrel | ⊢  ( 𝜑  →  𝐹  ⊆  ( ( 𝑋  /  𝑅 )  ×  𝑌 ) ) | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qlift.1 | ⊢ 𝐹  =  ran  ( 𝑥  ∈  𝑋  ↦  〈 [ 𝑥 ] 𝑅 ,  𝐴 〉 ) | 
						
							| 2 |  | qlift.2 | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  𝐴  ∈  𝑌 ) | 
						
							| 3 |  | qlift.3 | ⊢ ( 𝜑  →  𝑅  Er  𝑋 ) | 
						
							| 4 |  | qlift.4 | ⊢ ( 𝜑  →  𝑋  ∈  𝑉 ) | 
						
							| 5 | 1 2 3 4 | qliftlem | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝑋 )  →  [ 𝑥 ] 𝑅  ∈  ( 𝑋  /  𝑅 ) ) | 
						
							| 6 | 1 5 2 | fliftrel | ⊢ ( 𝜑  →  𝐹  ⊆  ( ( 𝑋  /  𝑅 )  ×  𝑌 ) ) |