Metamath Proof Explorer
Description: F , a function lift, is a subset of R X. S . (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)
|
|
Ref |
Expression |
|
Hypotheses |
qlift.1 |
⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 ) |
|
|
qlift.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) |
|
|
qlift.3 |
⊢ ( 𝜑 → 𝑅 Er 𝑋 ) |
|
|
qlift.4 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
|
Assertion |
qliftrel |
⊢ ( 𝜑 → 𝐹 ⊆ ( ( 𝑋 / 𝑅 ) × 𝑌 ) ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
qlift.1 |
⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 ) |
2 |
|
qlift.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) |
3 |
|
qlift.3 |
⊢ ( 𝜑 → 𝑅 Er 𝑋 ) |
4 |
|
qlift.4 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
5 |
1 2 3 4
|
qliftlem |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → [ 𝑥 ] 𝑅 ∈ ( 𝑋 / 𝑅 ) ) |
6 |
1 5 2
|
fliftrel |
⊢ ( 𝜑 → 𝐹 ⊆ ( ( 𝑋 / 𝑅 ) × 𝑌 ) ) |