Description: The value of the function F . (Contributed by Mario Carneiro, 23-Dec-2016) (Revised by AV, 3-Aug-2024)
Ref | Expression | ||
---|---|---|---|
Hypotheses | qlift.1 | ⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 ) | |
qlift.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) | ||
qlift.3 | ⊢ ( 𝜑 → 𝑅 Er 𝑋 ) | ||
qlift.4 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | ||
qliftval.4 | ⊢ ( 𝑥 = 𝐶 → 𝐴 = 𝐵 ) | ||
qliftval.6 | ⊢ ( 𝜑 → Fun 𝐹 ) | ||
Assertion | qliftval | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐹 ‘ [ 𝐶 ] 𝑅 ) = 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | qlift.1 | ⊢ 𝐹 = ran ( 𝑥 ∈ 𝑋 ↦ 〈 [ 𝑥 ] 𝑅 , 𝐴 〉 ) | |
2 | qlift.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ 𝑌 ) | |
3 | qlift.3 | ⊢ ( 𝜑 → 𝑅 Er 𝑋 ) | |
4 | qlift.4 | ⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) | |
5 | qliftval.4 | ⊢ ( 𝑥 = 𝐶 → 𝐴 = 𝐵 ) | |
6 | qliftval.6 | ⊢ ( 𝜑 → Fun 𝐹 ) | |
7 | 1 2 3 4 | qliftlem | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → [ 𝑥 ] 𝑅 ∈ ( 𝑋 / 𝑅 ) ) |
8 | eceq1 | ⊢ ( 𝑥 = 𝐶 → [ 𝑥 ] 𝑅 = [ 𝐶 ] 𝑅 ) | |
9 | 1 7 2 8 5 6 | fliftval | ⊢ ( ( 𝜑 ∧ 𝐶 ∈ 𝑋 ) → ( 𝐹 ‘ [ 𝐶 ] 𝑅 ) = 𝐵 ) |