| Step | Hyp | Ref | Expression | 
						
							| 1 |  | qeqnumdivden | ⊢ ( 𝐴  ∈  ℚ  →  𝐴  =  ( ( numer ‘ 𝐴 )  /  ( denom ‘ 𝐴 ) ) ) | 
						
							| 2 | 1 | oveq1d | ⊢ ( 𝐴  ∈  ℚ  →  ( 𝐴  ·  ( denom ‘ 𝐴 ) )  =  ( ( ( numer ‘ 𝐴 )  /  ( denom ‘ 𝐴 ) )  ·  ( denom ‘ 𝐴 ) ) ) | 
						
							| 3 |  | qnumcl | ⊢ ( 𝐴  ∈  ℚ  →  ( numer ‘ 𝐴 )  ∈  ℤ ) | 
						
							| 4 | 3 | zcnd | ⊢ ( 𝐴  ∈  ℚ  →  ( numer ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 5 |  | qdencl | ⊢ ( 𝐴  ∈  ℚ  →  ( denom ‘ 𝐴 )  ∈  ℕ ) | 
						
							| 6 | 5 | nncnd | ⊢ ( 𝐴  ∈  ℚ  →  ( denom ‘ 𝐴 )  ∈  ℂ ) | 
						
							| 7 | 5 | nnne0d | ⊢ ( 𝐴  ∈  ℚ  →  ( denom ‘ 𝐴 )  ≠  0 ) | 
						
							| 8 | 4 6 7 | divcan1d | ⊢ ( 𝐴  ∈  ℚ  →  ( ( ( numer ‘ 𝐴 )  /  ( denom ‘ 𝐴 ) )  ·  ( denom ‘ 𝐴 ) )  =  ( numer ‘ 𝐴 ) ) | 
						
							| 9 | 2 8 | eqtrd | ⊢ ( 𝐴  ∈  ℚ  →  ( 𝐴  ·  ( denom ‘ 𝐴 ) )  =  ( numer ‘ 𝐴 ) ) |