Step |
Hyp |
Ref |
Expression |
1 |
|
omelon |
⊢ ω ∈ On |
2 |
|
nnenom |
⊢ ℕ ≈ ω |
3 |
2
|
ensymi |
⊢ ω ≈ ℕ |
4 |
|
isnumi |
⊢ ( ( ω ∈ On ∧ ω ≈ ℕ ) → ℕ ∈ dom card ) |
5 |
1 3 4
|
mp2an |
⊢ ℕ ∈ dom card |
6 |
|
znnen |
⊢ ℤ ≈ ℕ |
7 |
|
ennum |
⊢ ( ℤ ≈ ℕ → ( ℤ ∈ dom card ↔ ℕ ∈ dom card ) ) |
8 |
6 7
|
ax-mp |
⊢ ( ℤ ∈ dom card ↔ ℕ ∈ dom card ) |
9 |
5 8
|
mpbir |
⊢ ℤ ∈ dom card |
10 |
|
xpnum |
⊢ ( ( ℤ ∈ dom card ∧ ℕ ∈ dom card ) → ( ℤ × ℕ ) ∈ dom card ) |
11 |
9 5 10
|
mp2an |
⊢ ( ℤ × ℕ ) ∈ dom card |
12 |
|
eqid |
⊢ ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ ↦ ( 𝑥 / 𝑦 ) ) = ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ ↦ ( 𝑥 / 𝑦 ) ) |
13 |
|
ovex |
⊢ ( 𝑥 / 𝑦 ) ∈ V |
14 |
12 13
|
fnmpoi |
⊢ ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ ↦ ( 𝑥 / 𝑦 ) ) Fn ( ℤ × ℕ ) |
15 |
12
|
rnmpo |
⊢ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ ↦ ( 𝑥 / 𝑦 ) ) = { 𝑧 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑧 = ( 𝑥 / 𝑦 ) } |
16 |
|
elq |
⊢ ( 𝑧 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑧 = ( 𝑥 / 𝑦 ) ) |
17 |
16
|
abbi2i |
⊢ ℚ = { 𝑧 ∣ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑧 = ( 𝑥 / 𝑦 ) } |
18 |
15 17
|
eqtr4i |
⊢ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ ↦ ( 𝑥 / 𝑦 ) ) = ℚ |
19 |
|
df-fo |
⊢ ( ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ ↦ ( 𝑥 / 𝑦 ) ) : ( ℤ × ℕ ) –onto→ ℚ ↔ ( ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ ↦ ( 𝑥 / 𝑦 ) ) Fn ( ℤ × ℕ ) ∧ ran ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ ↦ ( 𝑥 / 𝑦 ) ) = ℚ ) ) |
20 |
14 18 19
|
mpbir2an |
⊢ ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ ↦ ( 𝑥 / 𝑦 ) ) : ( ℤ × ℕ ) –onto→ ℚ |
21 |
|
fodomnum |
⊢ ( ( ℤ × ℕ ) ∈ dom card → ( ( 𝑥 ∈ ℤ , 𝑦 ∈ ℕ ↦ ( 𝑥 / 𝑦 ) ) : ( ℤ × ℕ ) –onto→ ℚ → ℚ ≼ ( ℤ × ℕ ) ) ) |
22 |
11 20 21
|
mp2 |
⊢ ℚ ≼ ( ℤ × ℕ ) |
23 |
|
nnex |
⊢ ℕ ∈ V |
24 |
23
|
enref |
⊢ ℕ ≈ ℕ |
25 |
|
xpen |
⊢ ( ( ℤ ≈ ℕ ∧ ℕ ≈ ℕ ) → ( ℤ × ℕ ) ≈ ( ℕ × ℕ ) ) |
26 |
6 24 25
|
mp2an |
⊢ ( ℤ × ℕ ) ≈ ( ℕ × ℕ ) |
27 |
|
xpnnen |
⊢ ( ℕ × ℕ ) ≈ ℕ |
28 |
26 27
|
entri |
⊢ ( ℤ × ℕ ) ≈ ℕ |
29 |
|
domentr |
⊢ ( ( ℚ ≼ ( ℤ × ℕ ) ∧ ( ℤ × ℕ ) ≈ ℕ ) → ℚ ≼ ℕ ) |
30 |
22 28 29
|
mp2an |
⊢ ℚ ≼ ℕ |
31 |
|
qex |
⊢ ℚ ∈ V |
32 |
|
nnssq |
⊢ ℕ ⊆ ℚ |
33 |
|
ssdomg |
⊢ ( ℚ ∈ V → ( ℕ ⊆ ℚ → ℕ ≼ ℚ ) ) |
34 |
31 32 33
|
mp2 |
⊢ ℕ ≼ ℚ |
35 |
|
sbth |
⊢ ( ( ℚ ≼ ℕ ∧ ℕ ≼ ℚ ) → ℚ ≈ ℕ ) |
36 |
30 34 35
|
mp2an |
⊢ ℚ ≈ ℕ |