Metamath Proof Explorer


Theorem qnumcl

Description: The canonical numerator of a rational is an integer. (Contributed by Stefan O'Rear, 13-Sep-2014)

Ref Expression
Assertion qnumcl ( 𝐴 ∈ ℚ → ( numer ‘ 𝐴 ) ∈ ℤ )

Proof

Step Hyp Ref Expression
1 qnumdencl ( 𝐴 ∈ ℚ → ( ( numer ‘ 𝐴 ) ∈ ℤ ∧ ( denom ‘ 𝐴 ) ∈ ℕ ) )
2 1 simpld ( 𝐴 ∈ ℚ → ( numer ‘ 𝐴 ) ∈ ℤ )