Step |
Hyp |
Ref |
Expression |
1 |
|
0red |
⊢ ( 𝐴 ∈ ℚ → 0 ∈ ℝ ) |
2 |
|
qre |
⊢ ( 𝐴 ∈ ℚ → 𝐴 ∈ ℝ ) |
3 |
|
qdencl |
⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ∈ ℕ ) |
4 |
3
|
nnred |
⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ∈ ℝ ) |
5 |
3
|
nngt0d |
⊢ ( 𝐴 ∈ ℚ → 0 < ( denom ‘ 𝐴 ) ) |
6 |
|
ltmul1 |
⊢ ( ( 0 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( ( denom ‘ 𝐴 ) ∈ ℝ ∧ 0 < ( denom ‘ 𝐴 ) ) ) → ( 0 < 𝐴 ↔ ( 0 · ( denom ‘ 𝐴 ) ) < ( 𝐴 · ( denom ‘ 𝐴 ) ) ) ) |
7 |
1 2 4 5 6
|
syl112anc |
⊢ ( 𝐴 ∈ ℚ → ( 0 < 𝐴 ↔ ( 0 · ( denom ‘ 𝐴 ) ) < ( 𝐴 · ( denom ‘ 𝐴 ) ) ) ) |
8 |
3
|
nncnd |
⊢ ( 𝐴 ∈ ℚ → ( denom ‘ 𝐴 ) ∈ ℂ ) |
9 |
8
|
mul02d |
⊢ ( 𝐴 ∈ ℚ → ( 0 · ( denom ‘ 𝐴 ) ) = 0 ) |
10 |
|
qmuldeneqnum |
⊢ ( 𝐴 ∈ ℚ → ( 𝐴 · ( denom ‘ 𝐴 ) ) = ( numer ‘ 𝐴 ) ) |
11 |
9 10
|
breq12d |
⊢ ( 𝐴 ∈ ℚ → ( ( 0 · ( denom ‘ 𝐴 ) ) < ( 𝐴 · ( denom ‘ 𝐴 ) ) ↔ 0 < ( numer ‘ 𝐴 ) ) ) |
12 |
7 11
|
bitrd |
⊢ ( 𝐴 ∈ ℚ → ( 0 < 𝐴 ↔ 0 < ( numer ‘ 𝐴 ) ) ) |