Step |
Hyp |
Ref |
Expression |
1 |
|
elq |
⊢ ( 𝐴 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) ) |
2 |
|
zre |
⊢ ( 𝑥 ∈ ℤ → 𝑥 ∈ ℝ ) |
3 |
|
nnre |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) |
4 |
|
nnne0 |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ≠ 0 ) |
5 |
3 4
|
jca |
⊢ ( 𝑦 ∈ ℕ → ( 𝑦 ∈ ℝ ∧ 𝑦 ≠ 0 ) ) |
6 |
|
redivcl |
⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ∧ 𝑦 ≠ 0 ) → ( 𝑥 / 𝑦 ) ∈ ℝ ) |
7 |
6
|
3expb |
⊢ ( ( 𝑥 ∈ ℝ ∧ ( 𝑦 ∈ ℝ ∧ 𝑦 ≠ 0 ) ) → ( 𝑥 / 𝑦 ) ∈ ℝ ) |
8 |
2 5 7
|
syl2an |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 / 𝑦 ) ∈ ℝ ) |
9 |
|
eleq1 |
⊢ ( 𝐴 = ( 𝑥 / 𝑦 ) → ( 𝐴 ∈ ℝ ↔ ( 𝑥 / 𝑦 ) ∈ ℝ ) ) |
10 |
8 9
|
syl5ibrcom |
⊢ ( ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) → ( 𝐴 = ( 𝑥 / 𝑦 ) → 𝐴 ∈ ℝ ) ) |
11 |
10
|
rexlimivv |
⊢ ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝐴 = ( 𝑥 / 𝑦 ) → 𝐴 ∈ ℝ ) |
12 |
1 11
|
sylbi |
⊢ ( 𝐴 ∈ ℚ → 𝐴 ∈ ℝ ) |