Metamath Proof Explorer


Theorem qred

Description: A rational number is a real number. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypothesis qred.1 ( 𝜑𝐴 ∈ ℚ )
Assertion qred ( 𝜑𝐴 ∈ ℝ )

Proof

Step Hyp Ref Expression
1 qred.1 ( 𝜑𝐴 ∈ ℚ )
2 qre ( 𝐴 ∈ ℚ → 𝐴 ∈ ℝ )
3 1 2 syl ( 𝜑𝐴 ∈ ℝ )