Step |
Hyp |
Ref |
Expression |
1 |
|
zcn |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) |
2 |
1
|
adantr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℂ ) |
3 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
4 |
3
|
adantl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℂ ) |
5 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
6 |
5
|
adantl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ≠ 0 ) |
7 |
2 4 6
|
divcld |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 / 𝑁 ) ∈ ℂ ) |
8 |
7
|
3adant3 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑀 / 𝑁 ) ∈ ℂ ) |
9 |
8
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( 𝑀 / 𝑁 ) ∈ ℂ ) |
10 |
|
zcn |
⊢ ( 𝑃 ∈ ℤ → 𝑃 ∈ ℂ ) |
11 |
10
|
adantr |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ) → 𝑃 ∈ ℂ ) |
12 |
|
nncn |
⊢ ( 𝑄 ∈ ℕ → 𝑄 ∈ ℂ ) |
13 |
12
|
adantl |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ) → 𝑄 ∈ ℂ ) |
14 |
|
nnne0 |
⊢ ( 𝑄 ∈ ℕ → 𝑄 ≠ 0 ) |
15 |
14
|
adantl |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ) → 𝑄 ≠ 0 ) |
16 |
11 13 15
|
divcld |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ) → ( 𝑃 / 𝑄 ) ∈ ℂ ) |
17 |
16
|
3adant3 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → ( 𝑃 / 𝑄 ) ∈ ℂ ) |
18 |
17
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( 𝑃 / 𝑄 ) ∈ ℂ ) |
19 |
3
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → 𝑁 ∈ ℂ ) |
20 |
19
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → 𝑁 ∈ ℂ ) |
21 |
5
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → 𝑁 ≠ 0 ) |
22 |
21
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → 𝑁 ≠ 0 ) |
23 |
9 18 20 22
|
mulcand |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑁 · ( 𝑀 / 𝑁 ) ) = ( 𝑁 · ( 𝑃 / 𝑄 ) ) ↔ ( 𝑀 / 𝑁 ) = ( 𝑃 / 𝑄 ) ) ) |
24 |
2 4 6
|
divcan2d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 · ( 𝑀 / 𝑁 ) ) = 𝑀 ) |
25 |
24
|
3adant3 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑁 · ( 𝑀 / 𝑁 ) ) = 𝑀 ) |
26 |
25
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( 𝑁 · ( 𝑀 / 𝑁 ) ) = 𝑀 ) |
27 |
26
|
eqeq1d |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑁 · ( 𝑀 / 𝑁 ) ) = ( 𝑁 · ( 𝑃 / 𝑄 ) ) ↔ 𝑀 = ( 𝑁 · ( 𝑃 / 𝑄 ) ) ) ) |
28 |
23 27
|
bitr3d |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑀 / 𝑁 ) = ( 𝑃 / 𝑄 ) ↔ 𝑀 = ( 𝑁 · ( 𝑃 / 𝑄 ) ) ) ) |
29 |
1
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → 𝑀 ∈ ℂ ) |
30 |
29
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → 𝑀 ∈ ℂ ) |
31 |
|
mulcl |
⊢ ( ( 𝑁 ∈ ℂ ∧ ( 𝑃 / 𝑄 ) ∈ ℂ ) → ( 𝑁 · ( 𝑃 / 𝑄 ) ) ∈ ℂ ) |
32 |
19 17 31
|
syl2an |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( 𝑁 · ( 𝑃 / 𝑄 ) ) ∈ ℂ ) |
33 |
12
|
3ad2ant2 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → 𝑄 ∈ ℂ ) |
34 |
33
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → 𝑄 ∈ ℂ ) |
35 |
14
|
3ad2ant2 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → 𝑄 ≠ 0 ) |
36 |
35
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → 𝑄 ≠ 0 ) |
37 |
30 32 34 36
|
mulcan2d |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑀 · 𝑄 ) = ( ( 𝑁 · ( 𝑃 / 𝑄 ) ) · 𝑄 ) ↔ 𝑀 = ( 𝑁 · ( 𝑃 / 𝑄 ) ) ) ) |
38 |
20 18 34
|
mulassd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑁 · ( 𝑃 / 𝑄 ) ) · 𝑄 ) = ( 𝑁 · ( ( 𝑃 / 𝑄 ) · 𝑄 ) ) ) |
39 |
11 13 15
|
divcan1d |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ) → ( ( 𝑃 / 𝑄 ) · 𝑄 ) = 𝑃 ) |
40 |
39
|
3adant3 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → ( ( 𝑃 / 𝑄 ) · 𝑄 ) = 𝑃 ) |
41 |
40
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑃 / 𝑄 ) · 𝑄 ) = 𝑃 ) |
42 |
41
|
oveq2d |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( 𝑁 · ( ( 𝑃 / 𝑄 ) · 𝑄 ) ) = ( 𝑁 · 𝑃 ) ) |
43 |
38 42
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑁 · ( 𝑃 / 𝑄 ) ) · 𝑄 ) = ( 𝑁 · 𝑃 ) ) |
44 |
43
|
eqeq2d |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑀 · 𝑄 ) = ( ( 𝑁 · ( 𝑃 / 𝑄 ) ) · 𝑄 ) ↔ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) ) |
45 |
37 44
|
bitr3d |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( 𝑀 = ( 𝑁 · ( 𝑃 / 𝑄 ) ) ↔ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) ) |
46 |
28 45
|
bitrd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑀 / 𝑁 ) = ( 𝑃 / 𝑄 ) ↔ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) ) |
47 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
48 |
47
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → 𝑁 ∈ ℤ ) |
49 |
|
simp2 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → 𝑄 ∈ ℕ ) |
50 |
48 49
|
anim12i |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( 𝑁 ∈ ℤ ∧ 𝑄 ∈ ℕ ) ) |
51 |
50
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑁 ∈ ℤ ∧ 𝑄 ∈ ℕ ) ) |
52 |
48
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → 𝑁 ∈ ℤ ) |
53 |
|
simpl1 |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → 𝑀 ∈ ℤ ) |
54 |
|
nnz |
⊢ ( 𝑄 ∈ ℕ → 𝑄 ∈ ℤ ) |
55 |
54
|
3ad2ant2 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → 𝑄 ∈ ℤ ) |
56 |
55
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → 𝑄 ∈ ℤ ) |
57 |
52 53 56
|
3jca |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ ) ) |
58 |
57
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ ) ) |
59 |
|
simp1 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → 𝑃 ∈ ℤ ) |
60 |
|
dvdsmul1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → 𝑁 ∥ ( 𝑁 · 𝑃 ) ) |
61 |
48 59 60
|
syl2an |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → 𝑁 ∥ ( 𝑁 · 𝑃 ) ) |
62 |
61
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → 𝑁 ∥ ( 𝑁 · 𝑃 ) ) |
63 |
|
simpr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) |
64 |
62 63
|
breqtrrd |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → 𝑁 ∥ ( 𝑀 · 𝑄 ) ) |
65 |
|
gcdcom |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 gcd 𝑀 ) = ( 𝑀 gcd 𝑁 ) ) |
66 |
47 65
|
sylan |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 gcd 𝑀 ) = ( 𝑀 gcd 𝑁 ) ) |
67 |
66
|
ancoms |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 gcd 𝑀 ) = ( 𝑀 gcd 𝑁 ) ) |
68 |
67
|
3adant3 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑁 gcd 𝑀 ) = ( 𝑀 gcd 𝑁 ) ) |
69 |
|
simp3 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑀 gcd 𝑁 ) = 1 ) |
70 |
68 69
|
eqtrd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑁 gcd 𝑀 ) = 1 ) |
71 |
70
|
ad2antrr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑁 gcd 𝑀 ) = 1 ) |
72 |
64 71
|
jca |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑁 ∥ ( 𝑀 · 𝑄 ) ∧ ( 𝑁 gcd 𝑀 ) = 1 ) ) |
73 |
|
coprmdvds |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ ) → ( ( 𝑁 ∥ ( 𝑀 · 𝑄 ) ∧ ( 𝑁 gcd 𝑀 ) = 1 ) → 𝑁 ∥ 𝑄 ) ) |
74 |
58 72 73
|
sylc |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → 𝑁 ∥ 𝑄 ) |
75 |
|
dvdsle |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑄 ∈ ℕ ) → ( 𝑁 ∥ 𝑄 → 𝑁 ≤ 𝑄 ) ) |
76 |
51 74 75
|
sylc |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → 𝑁 ≤ 𝑄 ) |
77 |
|
simp2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → 𝑁 ∈ ℕ ) |
78 |
55 77
|
anim12i |
⊢ ( ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) → ( 𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ) |
79 |
78
|
ancoms |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( 𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ) |
80 |
79
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ) |
81 |
|
simpr1 |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → 𝑃 ∈ ℤ ) |
82 |
56 81 52
|
3jca |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( 𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
83 |
82
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
84 |
|
simp1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → 𝑀 ∈ ℤ ) |
85 |
|
dvdsmul2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ ) → 𝑄 ∥ ( 𝑀 · 𝑄 ) ) |
86 |
84 55 85
|
syl2an |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → 𝑄 ∥ ( 𝑀 · 𝑄 ) ) |
87 |
86
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → 𝑄 ∥ ( 𝑀 · 𝑄 ) ) |
88 |
10
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → 𝑃 ∈ ℂ ) |
89 |
|
mulcom |
⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑃 ∈ ℂ ) → ( 𝑁 · 𝑃 ) = ( 𝑃 · 𝑁 ) ) |
90 |
19 88 89
|
syl2an |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( 𝑁 · 𝑃 ) = ( 𝑃 · 𝑁 ) ) |
91 |
90
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑁 · 𝑃 ) = ( 𝑃 · 𝑁 ) ) |
92 |
63 91
|
eqtrd |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑀 · 𝑄 ) = ( 𝑃 · 𝑁 ) ) |
93 |
87 92
|
breqtrd |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → 𝑄 ∥ ( 𝑃 · 𝑁 ) ) |
94 |
|
gcdcom |
⊢ ( ( 𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑄 gcd 𝑃 ) = ( 𝑃 gcd 𝑄 ) ) |
95 |
54 94
|
sylan |
⊢ ( ( 𝑄 ∈ ℕ ∧ 𝑃 ∈ ℤ ) → ( 𝑄 gcd 𝑃 ) = ( 𝑃 gcd 𝑄 ) ) |
96 |
95
|
ancoms |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ) → ( 𝑄 gcd 𝑃 ) = ( 𝑃 gcd 𝑄 ) ) |
97 |
96
|
3adant3 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → ( 𝑄 gcd 𝑃 ) = ( 𝑃 gcd 𝑄 ) ) |
98 |
|
simp3 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → ( 𝑃 gcd 𝑄 ) = 1 ) |
99 |
97 98
|
eqtrd |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → ( 𝑄 gcd 𝑃 ) = 1 ) |
100 |
99
|
ad2antlr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑄 gcd 𝑃 ) = 1 ) |
101 |
93 100
|
jca |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑄 ∥ ( 𝑃 · 𝑁 ) ∧ ( 𝑄 gcd 𝑃 ) = 1 ) ) |
102 |
|
coprmdvds |
⊢ ( ( 𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑄 ∥ ( 𝑃 · 𝑁 ) ∧ ( 𝑄 gcd 𝑃 ) = 1 ) → 𝑄 ∥ 𝑁 ) ) |
103 |
83 101 102
|
sylc |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → 𝑄 ∥ 𝑁 ) |
104 |
|
dvdsle |
⊢ ( ( 𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑄 ∥ 𝑁 → 𝑄 ≤ 𝑁 ) ) |
105 |
80 103 104
|
sylc |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → 𝑄 ≤ 𝑁 ) |
106 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
107 |
106
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → 𝑁 ∈ ℝ ) |
108 |
107
|
ad2antrr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → 𝑁 ∈ ℝ ) |
109 |
|
nnre |
⊢ ( 𝑄 ∈ ℕ → 𝑄 ∈ ℝ ) |
110 |
109
|
3ad2ant2 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → 𝑄 ∈ ℝ ) |
111 |
110
|
ad2antlr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → 𝑄 ∈ ℝ ) |
112 |
108 111
|
letri3d |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑁 = 𝑄 ↔ ( 𝑁 ≤ 𝑄 ∧ 𝑄 ≤ 𝑁 ) ) ) |
113 |
76 105 112
|
mpbir2and |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → 𝑁 = 𝑄 ) |
114 |
|
oveq2 |
⊢ ( 𝑁 = 𝑄 → ( 𝑀 · 𝑁 ) = ( 𝑀 · 𝑄 ) ) |
115 |
114
|
eqeq1d |
⊢ ( 𝑁 = 𝑄 → ( ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑃 ) ↔ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) ) |
116 |
115
|
anbi2d |
⊢ ( 𝑁 = 𝑄 → ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑃 ) ) ↔ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) ) ) |
117 |
|
mulcom |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑀 ) ) |
118 |
1 3 117
|
syl2an |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑀 ) ) |
119 |
118
|
3adant3 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑀 ) ) |
120 |
119
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑀 ) ) |
121 |
120
|
eqeq1d |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑃 ) ↔ ( 𝑁 · 𝑀 ) = ( 𝑁 · 𝑃 ) ) ) |
122 |
88
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → 𝑃 ∈ ℂ ) |
123 |
30 122 20 22
|
mulcand |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑁 · 𝑀 ) = ( 𝑁 · 𝑃 ) ↔ 𝑀 = 𝑃 ) ) |
124 |
121 123
|
bitrd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑃 ) ↔ 𝑀 = 𝑃 ) ) |
125 |
124
|
biimpa |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑃 ) ) → 𝑀 = 𝑃 ) |
126 |
116 125
|
syl6bir |
⊢ ( 𝑁 = 𝑄 → ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → 𝑀 = 𝑃 ) ) |
127 |
126
|
com12 |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑁 = 𝑄 → 𝑀 = 𝑃 ) ) |
128 |
127
|
ancrd |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑁 = 𝑄 → ( 𝑀 = 𝑃 ∧ 𝑁 = 𝑄 ) ) ) |
129 |
113 128
|
mpd |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑀 = 𝑃 ∧ 𝑁 = 𝑄 ) ) |
130 |
129
|
ex |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) → ( 𝑀 = 𝑃 ∧ 𝑁 = 𝑄 ) ) ) |
131 |
46 130
|
sylbid |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑀 / 𝑁 ) = ( 𝑃 / 𝑄 ) → ( 𝑀 = 𝑃 ∧ 𝑁 = 𝑄 ) ) ) |
132 |
131
|
3impia |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ∧ ( 𝑀 / 𝑁 ) = ( 𝑃 / 𝑄 ) ) → ( 𝑀 = 𝑃 ∧ 𝑁 = 𝑄 ) ) |