| Step |
Hyp |
Ref |
Expression |
| 1 |
|
zcn |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℂ ) |
| 2 |
1
|
adantr |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑀 ∈ ℂ ) |
| 3 |
|
nncn |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) |
| 4 |
3
|
adantl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ∈ ℂ ) |
| 5 |
|
nnne0 |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ≠ 0 ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → 𝑁 ≠ 0 ) |
| 7 |
2 4 6
|
divcld |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 / 𝑁 ) ∈ ℂ ) |
| 8 |
7
|
3adant3 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑀 / 𝑁 ) ∈ ℂ ) |
| 9 |
8
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( 𝑀 / 𝑁 ) ∈ ℂ ) |
| 10 |
|
zcn |
⊢ ( 𝑃 ∈ ℤ → 𝑃 ∈ ℂ ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ) → 𝑃 ∈ ℂ ) |
| 12 |
|
nncn |
⊢ ( 𝑄 ∈ ℕ → 𝑄 ∈ ℂ ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ) → 𝑄 ∈ ℂ ) |
| 14 |
|
nnne0 |
⊢ ( 𝑄 ∈ ℕ → 𝑄 ≠ 0 ) |
| 15 |
14
|
adantl |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ) → 𝑄 ≠ 0 ) |
| 16 |
11 13 15
|
divcld |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ) → ( 𝑃 / 𝑄 ) ∈ ℂ ) |
| 17 |
16
|
3adant3 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → ( 𝑃 / 𝑄 ) ∈ ℂ ) |
| 18 |
17
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( 𝑃 / 𝑄 ) ∈ ℂ ) |
| 19 |
3
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → 𝑁 ∈ ℂ ) |
| 20 |
19
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → 𝑁 ∈ ℂ ) |
| 21 |
5
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → 𝑁 ≠ 0 ) |
| 22 |
21
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → 𝑁 ≠ 0 ) |
| 23 |
9 18 20 22
|
mulcand |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑁 · ( 𝑀 / 𝑁 ) ) = ( 𝑁 · ( 𝑃 / 𝑄 ) ) ↔ ( 𝑀 / 𝑁 ) = ( 𝑃 / 𝑄 ) ) ) |
| 24 |
2 4 6
|
divcan2d |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 · ( 𝑀 / 𝑁 ) ) = 𝑀 ) |
| 25 |
24
|
3adant3 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑁 · ( 𝑀 / 𝑁 ) ) = 𝑀 ) |
| 26 |
25
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( 𝑁 · ( 𝑀 / 𝑁 ) ) = 𝑀 ) |
| 27 |
26
|
eqeq1d |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑁 · ( 𝑀 / 𝑁 ) ) = ( 𝑁 · ( 𝑃 / 𝑄 ) ) ↔ 𝑀 = ( 𝑁 · ( 𝑃 / 𝑄 ) ) ) ) |
| 28 |
23 27
|
bitr3d |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑀 / 𝑁 ) = ( 𝑃 / 𝑄 ) ↔ 𝑀 = ( 𝑁 · ( 𝑃 / 𝑄 ) ) ) ) |
| 29 |
1
|
3ad2ant1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → 𝑀 ∈ ℂ ) |
| 30 |
29
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → 𝑀 ∈ ℂ ) |
| 31 |
|
mulcl |
⊢ ( ( 𝑁 ∈ ℂ ∧ ( 𝑃 / 𝑄 ) ∈ ℂ ) → ( 𝑁 · ( 𝑃 / 𝑄 ) ) ∈ ℂ ) |
| 32 |
19 17 31
|
syl2an |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( 𝑁 · ( 𝑃 / 𝑄 ) ) ∈ ℂ ) |
| 33 |
12
|
3ad2ant2 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → 𝑄 ∈ ℂ ) |
| 34 |
33
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → 𝑄 ∈ ℂ ) |
| 35 |
14
|
3ad2ant2 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → 𝑄 ≠ 0 ) |
| 36 |
35
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → 𝑄 ≠ 0 ) |
| 37 |
30 32 34 36
|
mulcan2d |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑀 · 𝑄 ) = ( ( 𝑁 · ( 𝑃 / 𝑄 ) ) · 𝑄 ) ↔ 𝑀 = ( 𝑁 · ( 𝑃 / 𝑄 ) ) ) ) |
| 38 |
20 18 34
|
mulassd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑁 · ( 𝑃 / 𝑄 ) ) · 𝑄 ) = ( 𝑁 · ( ( 𝑃 / 𝑄 ) · 𝑄 ) ) ) |
| 39 |
11 13 15
|
divcan1d |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ) → ( ( 𝑃 / 𝑄 ) · 𝑄 ) = 𝑃 ) |
| 40 |
39
|
3adant3 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → ( ( 𝑃 / 𝑄 ) · 𝑄 ) = 𝑃 ) |
| 41 |
40
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑃 / 𝑄 ) · 𝑄 ) = 𝑃 ) |
| 42 |
41
|
oveq2d |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( 𝑁 · ( ( 𝑃 / 𝑄 ) · 𝑄 ) ) = ( 𝑁 · 𝑃 ) ) |
| 43 |
38 42
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑁 · ( 𝑃 / 𝑄 ) ) · 𝑄 ) = ( 𝑁 · 𝑃 ) ) |
| 44 |
43
|
eqeq2d |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑀 · 𝑄 ) = ( ( 𝑁 · ( 𝑃 / 𝑄 ) ) · 𝑄 ) ↔ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) ) |
| 45 |
37 44
|
bitr3d |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( 𝑀 = ( 𝑁 · ( 𝑃 / 𝑄 ) ) ↔ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) ) |
| 46 |
28 45
|
bitrd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑀 / 𝑁 ) = ( 𝑃 / 𝑄 ) ↔ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) ) |
| 47 |
|
nnz |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) |
| 48 |
47
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → 𝑁 ∈ ℤ ) |
| 49 |
|
simp2 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → 𝑄 ∈ ℕ ) |
| 50 |
48 49
|
anim12i |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( 𝑁 ∈ ℤ ∧ 𝑄 ∈ ℕ ) ) |
| 51 |
50
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑁 ∈ ℤ ∧ 𝑄 ∈ ℕ ) ) |
| 52 |
48
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → 𝑁 ∈ ℤ ) |
| 53 |
|
simpl1 |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → 𝑀 ∈ ℤ ) |
| 54 |
|
nnz |
⊢ ( 𝑄 ∈ ℕ → 𝑄 ∈ ℤ ) |
| 55 |
54
|
3ad2ant2 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → 𝑄 ∈ ℤ ) |
| 56 |
55
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → 𝑄 ∈ ℤ ) |
| 57 |
52 53 56
|
3jca |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ ) ) |
| 58 |
57
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ ) ) |
| 59 |
|
simp1 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → 𝑃 ∈ ℤ ) |
| 60 |
|
dvdsmul1 |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → 𝑁 ∥ ( 𝑁 · 𝑃 ) ) |
| 61 |
48 59 60
|
syl2an |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → 𝑁 ∥ ( 𝑁 · 𝑃 ) ) |
| 62 |
61
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → 𝑁 ∥ ( 𝑁 · 𝑃 ) ) |
| 63 |
|
simpr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) |
| 64 |
62 63
|
breqtrrd |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → 𝑁 ∥ ( 𝑀 · 𝑄 ) ) |
| 65 |
|
gcdcom |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 gcd 𝑀 ) = ( 𝑀 gcd 𝑁 ) ) |
| 66 |
47 65
|
sylan |
⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ℤ ) → ( 𝑁 gcd 𝑀 ) = ( 𝑀 gcd 𝑁 ) ) |
| 67 |
66
|
ancoms |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑁 gcd 𝑀 ) = ( 𝑀 gcd 𝑁 ) ) |
| 68 |
67
|
3adant3 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑁 gcd 𝑀 ) = ( 𝑀 gcd 𝑁 ) ) |
| 69 |
|
simp3 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑀 gcd 𝑁 ) = 1 ) |
| 70 |
68 69
|
eqtrd |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑁 gcd 𝑀 ) = 1 ) |
| 71 |
70
|
ad2antrr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑁 gcd 𝑀 ) = 1 ) |
| 72 |
64 71
|
jca |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑁 ∥ ( 𝑀 · 𝑄 ) ∧ ( 𝑁 gcd 𝑀 ) = 1 ) ) |
| 73 |
|
coprmdvds |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ ) → ( ( 𝑁 ∥ ( 𝑀 · 𝑄 ) ∧ ( 𝑁 gcd 𝑀 ) = 1 ) → 𝑁 ∥ 𝑄 ) ) |
| 74 |
58 72 73
|
sylc |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → 𝑁 ∥ 𝑄 ) |
| 75 |
|
dvdsle |
⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑄 ∈ ℕ ) → ( 𝑁 ∥ 𝑄 → 𝑁 ≤ 𝑄 ) ) |
| 76 |
51 74 75
|
sylc |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → 𝑁 ≤ 𝑄 ) |
| 77 |
|
simp2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → 𝑁 ∈ ℕ ) |
| 78 |
55 77
|
anim12i |
⊢ ( ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ) → ( 𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ) |
| 79 |
78
|
ancoms |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( 𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ) |
| 80 |
79
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ ) ) |
| 81 |
|
simpr1 |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → 𝑃 ∈ ℤ ) |
| 82 |
56 81 52
|
3jca |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( 𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 83 |
82
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ) ) |
| 84 |
|
simp1 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → 𝑀 ∈ ℤ ) |
| 85 |
|
dvdsmul2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑄 ∈ ℤ ) → 𝑄 ∥ ( 𝑀 · 𝑄 ) ) |
| 86 |
84 55 85
|
syl2an |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → 𝑄 ∥ ( 𝑀 · 𝑄 ) ) |
| 87 |
86
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → 𝑄 ∥ ( 𝑀 · 𝑄 ) ) |
| 88 |
10
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → 𝑃 ∈ ℂ ) |
| 89 |
|
mulcom |
⊢ ( ( 𝑁 ∈ ℂ ∧ 𝑃 ∈ ℂ ) → ( 𝑁 · 𝑃 ) = ( 𝑃 · 𝑁 ) ) |
| 90 |
19 88 89
|
syl2an |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( 𝑁 · 𝑃 ) = ( 𝑃 · 𝑁 ) ) |
| 91 |
90
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑁 · 𝑃 ) = ( 𝑃 · 𝑁 ) ) |
| 92 |
63 91
|
eqtrd |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑀 · 𝑄 ) = ( 𝑃 · 𝑁 ) ) |
| 93 |
87 92
|
breqtrd |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → 𝑄 ∥ ( 𝑃 · 𝑁 ) ) |
| 94 |
|
gcdcom |
⊢ ( ( 𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ) → ( 𝑄 gcd 𝑃 ) = ( 𝑃 gcd 𝑄 ) ) |
| 95 |
54 94
|
sylan |
⊢ ( ( 𝑄 ∈ ℕ ∧ 𝑃 ∈ ℤ ) → ( 𝑄 gcd 𝑃 ) = ( 𝑃 gcd 𝑄 ) ) |
| 96 |
95
|
ancoms |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ) → ( 𝑄 gcd 𝑃 ) = ( 𝑃 gcd 𝑄 ) ) |
| 97 |
96
|
3adant3 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → ( 𝑄 gcd 𝑃 ) = ( 𝑃 gcd 𝑄 ) ) |
| 98 |
|
simp3 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → ( 𝑃 gcd 𝑄 ) = 1 ) |
| 99 |
97 98
|
eqtrd |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → ( 𝑄 gcd 𝑃 ) = 1 ) |
| 100 |
99
|
ad2antlr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑄 gcd 𝑃 ) = 1 ) |
| 101 |
93 100
|
jca |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑄 ∥ ( 𝑃 · 𝑁 ) ∧ ( 𝑄 gcd 𝑃 ) = 1 ) ) |
| 102 |
|
coprmdvds |
⊢ ( ( 𝑄 ∈ ℤ ∧ 𝑃 ∈ ℤ ∧ 𝑁 ∈ ℤ ) → ( ( 𝑄 ∥ ( 𝑃 · 𝑁 ) ∧ ( 𝑄 gcd 𝑃 ) = 1 ) → 𝑄 ∥ 𝑁 ) ) |
| 103 |
83 101 102
|
sylc |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → 𝑄 ∥ 𝑁 ) |
| 104 |
|
dvdsle |
⊢ ( ( 𝑄 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑄 ∥ 𝑁 → 𝑄 ≤ 𝑁 ) ) |
| 105 |
80 103 104
|
sylc |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → 𝑄 ≤ 𝑁 ) |
| 106 |
|
nnre |
⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℝ ) |
| 107 |
106
|
3ad2ant2 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → 𝑁 ∈ ℝ ) |
| 108 |
107
|
ad2antrr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → 𝑁 ∈ ℝ ) |
| 109 |
|
nnre |
⊢ ( 𝑄 ∈ ℕ → 𝑄 ∈ ℝ ) |
| 110 |
109
|
3ad2ant2 |
⊢ ( ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) → 𝑄 ∈ ℝ ) |
| 111 |
110
|
ad2antlr |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → 𝑄 ∈ ℝ ) |
| 112 |
108 111
|
letri3d |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑁 = 𝑄 ↔ ( 𝑁 ≤ 𝑄 ∧ 𝑄 ≤ 𝑁 ) ) ) |
| 113 |
76 105 112
|
mpbir2and |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → 𝑁 = 𝑄 ) |
| 114 |
|
oveq2 |
⊢ ( 𝑁 = 𝑄 → ( 𝑀 · 𝑁 ) = ( 𝑀 · 𝑄 ) ) |
| 115 |
114
|
eqeq1d |
⊢ ( 𝑁 = 𝑄 → ( ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑃 ) ↔ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) ) |
| 116 |
115
|
anbi2d |
⊢ ( 𝑁 = 𝑄 → ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑃 ) ) ↔ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) ) ) |
| 117 |
|
mulcom |
⊢ ( ( 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ ) → ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑀 ) ) |
| 118 |
1 3 117
|
syl2an |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ) → ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑀 ) ) |
| 119 |
118
|
3adant3 |
⊢ ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) → ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑀 ) ) |
| 120 |
119
|
adantr |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑀 ) ) |
| 121 |
120
|
eqeq1d |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑃 ) ↔ ( 𝑁 · 𝑀 ) = ( 𝑁 · 𝑃 ) ) ) |
| 122 |
88
|
adantl |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → 𝑃 ∈ ℂ ) |
| 123 |
30 122 20 22
|
mulcand |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑁 · 𝑀 ) = ( 𝑁 · 𝑃 ) ↔ 𝑀 = 𝑃 ) ) |
| 124 |
121 123
|
bitrd |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑃 ) ↔ 𝑀 = 𝑃 ) ) |
| 125 |
124
|
biimpa |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑁 ) = ( 𝑁 · 𝑃 ) ) → 𝑀 = 𝑃 ) |
| 126 |
116 125
|
biimtrrdi |
⊢ ( 𝑁 = 𝑄 → ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → 𝑀 = 𝑃 ) ) |
| 127 |
126
|
com12 |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑁 = 𝑄 → 𝑀 = 𝑃 ) ) |
| 128 |
127
|
ancrd |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑁 = 𝑄 → ( 𝑀 = 𝑃 ∧ 𝑁 = 𝑄 ) ) ) |
| 129 |
113 128
|
mpd |
⊢ ( ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) ∧ ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) ) → ( 𝑀 = 𝑃 ∧ 𝑁 = 𝑄 ) ) |
| 130 |
129
|
ex |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑀 · 𝑄 ) = ( 𝑁 · 𝑃 ) → ( 𝑀 = 𝑃 ∧ 𝑁 = 𝑄 ) ) ) |
| 131 |
46 130
|
sylbid |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ) → ( ( 𝑀 / 𝑁 ) = ( 𝑃 / 𝑄 ) → ( 𝑀 = 𝑃 ∧ 𝑁 = 𝑄 ) ) ) |
| 132 |
131
|
3impia |
⊢ ( ( ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℕ ∧ ( 𝑀 gcd 𝑁 ) = 1 ) ∧ ( 𝑃 ∈ ℤ ∧ 𝑄 ∈ ℕ ∧ ( 𝑃 gcd 𝑄 ) = 1 ) ∧ ( 𝑀 / 𝑁 ) = ( 𝑃 / 𝑄 ) ) → ( 𝑀 = 𝑃 ∧ 𝑁 = 𝑄 ) ) |