| Step |
Hyp |
Ref |
Expression |
| 1 |
|
qcn |
⊢ ( 𝐵 ∈ ℚ → 𝐵 ∈ ℂ ) |
| 2 |
|
pncan |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ) |
| 3 |
1 2
|
sylan2 |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℚ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ) |
| 4 |
3
|
ancoms |
⊢ ( ( 𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ) |
| 5 |
4
|
adantr |
⊢ ( ( ( 𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ ) ∧ ( 𝐴 + 𝐵 ) ∈ ℚ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) = 𝐴 ) |
| 6 |
|
qsubcl |
⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℚ ∧ 𝐵 ∈ ℚ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) ∈ ℚ ) |
| 7 |
6
|
ancoms |
⊢ ( ( 𝐵 ∈ ℚ ∧ ( 𝐴 + 𝐵 ) ∈ ℚ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) ∈ ℚ ) |
| 8 |
7
|
adantlr |
⊢ ( ( ( 𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ ) ∧ ( 𝐴 + 𝐵 ) ∈ ℚ ) → ( ( 𝐴 + 𝐵 ) − 𝐵 ) ∈ ℚ ) |
| 9 |
5 8
|
eqeltrrd |
⊢ ( ( ( 𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ ) ∧ ( 𝐴 + 𝐵 ) ∈ ℚ ) → 𝐴 ∈ ℚ ) |
| 10 |
9
|
ex |
⊢ ( ( 𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ∈ ℚ → 𝐴 ∈ ℚ ) ) |
| 11 |
|
qaddcl |
⊢ ( ( 𝐴 ∈ ℚ ∧ 𝐵 ∈ ℚ ) → ( 𝐴 + 𝐵 ) ∈ ℚ ) |
| 12 |
11
|
expcom |
⊢ ( 𝐵 ∈ ℚ → ( 𝐴 ∈ ℚ → ( 𝐴 + 𝐵 ) ∈ ℚ ) ) |
| 13 |
12
|
adantr |
⊢ ( ( 𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ ) → ( 𝐴 ∈ ℚ → ( 𝐴 + 𝐵 ) ∈ ℚ ) ) |
| 14 |
10 13
|
impbid |
⊢ ( ( 𝐵 ∈ ℚ ∧ 𝐴 ∈ ℂ ) → ( ( 𝐴 + 𝐵 ) ∈ ℚ ↔ 𝐴 ∈ ℚ ) ) |
| 15 |
14
|
pm5.32da |
⊢ ( 𝐵 ∈ ℚ → ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 + 𝐵 ) ∈ ℚ ) ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℚ ) ) ) |
| 16 |
|
qcn |
⊢ ( 𝐴 ∈ ℚ → 𝐴 ∈ ℂ ) |
| 17 |
16
|
pm4.71ri |
⊢ ( 𝐴 ∈ ℚ ↔ ( 𝐴 ∈ ℂ ∧ 𝐴 ∈ ℚ ) ) |
| 18 |
15 17
|
bitr4di |
⊢ ( 𝐵 ∈ ℚ → ( ( 𝐴 ∈ ℂ ∧ ( 𝐴 + 𝐵 ) ∈ ℚ ) ↔ 𝐴 ∈ ℚ ) ) |