Step |
Hyp |
Ref |
Expression |
1 |
|
qsdisj.1 |
⊢ ( 𝜑 → 𝑅 Er 𝑋 ) |
2 |
|
qsdisj.2 |
⊢ ( 𝜑 → 𝐵 ∈ ( 𝐴 / 𝑅 ) ) |
3 |
|
qsdisj.3 |
⊢ ( 𝜑 → 𝐶 ∈ ( 𝐴 / 𝑅 ) ) |
4 |
|
eqid |
⊢ ( 𝐴 / 𝑅 ) = ( 𝐴 / 𝑅 ) |
5 |
|
eqeq1 |
⊢ ( [ 𝑥 ] 𝑅 = 𝐵 → ( [ 𝑥 ] 𝑅 = 𝐶 ↔ 𝐵 = 𝐶 ) ) |
6 |
|
ineq1 |
⊢ ( [ 𝑥 ] 𝑅 = 𝐵 → ( [ 𝑥 ] 𝑅 ∩ 𝐶 ) = ( 𝐵 ∩ 𝐶 ) ) |
7 |
6
|
eqeq1d |
⊢ ( [ 𝑥 ] 𝑅 = 𝐵 → ( ( [ 𝑥 ] 𝑅 ∩ 𝐶 ) = ∅ ↔ ( 𝐵 ∩ 𝐶 ) = ∅ ) ) |
8 |
5 7
|
orbi12d |
⊢ ( [ 𝑥 ] 𝑅 = 𝐵 → ( ( [ 𝑥 ] 𝑅 = 𝐶 ∨ ( [ 𝑥 ] 𝑅 ∩ 𝐶 ) = ∅ ) ↔ ( 𝐵 = 𝐶 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ) ) |
9 |
|
eqeq2 |
⊢ ( [ 𝑦 ] 𝑅 = 𝐶 → ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ↔ [ 𝑥 ] 𝑅 = 𝐶 ) ) |
10 |
|
ineq2 |
⊢ ( [ 𝑦 ] 𝑅 = 𝐶 → ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ( [ 𝑥 ] 𝑅 ∩ 𝐶 ) ) |
11 |
10
|
eqeq1d |
⊢ ( [ 𝑦 ] 𝑅 = 𝐶 → ( ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ↔ ( [ 𝑥 ] 𝑅 ∩ 𝐶 ) = ∅ ) ) |
12 |
9 11
|
orbi12d |
⊢ ( [ 𝑦 ] 𝑅 = 𝐶 → ( ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ∨ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ) ↔ ( [ 𝑥 ] 𝑅 = 𝐶 ∨ ( [ 𝑥 ] 𝑅 ∩ 𝐶 ) = ∅ ) ) ) |
13 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → 𝑅 Er 𝑋 ) |
14 |
|
erdisj |
⊢ ( 𝑅 Er 𝑋 → ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ∨ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ) ) |
15 |
13 14
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑦 ∈ 𝐴 ) → ( [ 𝑥 ] 𝑅 = [ 𝑦 ] 𝑅 ∨ ( [ 𝑥 ] 𝑅 ∩ [ 𝑦 ] 𝑅 ) = ∅ ) ) |
16 |
4 12 15
|
ectocld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝐶 ∈ ( 𝐴 / 𝑅 ) ) → ( [ 𝑥 ] 𝑅 = 𝐶 ∨ ( [ 𝑥 ] 𝑅 ∩ 𝐶 ) = ∅ ) ) |
17 |
3 16
|
mpidan |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( [ 𝑥 ] 𝑅 = 𝐶 ∨ ( [ 𝑥 ] 𝑅 ∩ 𝐶 ) = ∅ ) ) |
18 |
4 8 17
|
ectocld |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ ( 𝐴 / 𝑅 ) ) → ( 𝐵 = 𝐶 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ) |
19 |
2 18
|
mpdan |
⊢ ( 𝜑 → ( 𝐵 = 𝐶 ∨ ( 𝐵 ∩ 𝐶 ) = ∅ ) ) |