Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝑅 Er 𝑋 ∧ ( 𝑥 ∈ ( 𝐴 / 𝑅 ) ∧ 𝑦 ∈ ( 𝐴 / 𝑅 ) ) ) → 𝑅 Er 𝑋 ) |
2 |
|
simprl |
⊢ ( ( 𝑅 Er 𝑋 ∧ ( 𝑥 ∈ ( 𝐴 / 𝑅 ) ∧ 𝑦 ∈ ( 𝐴 / 𝑅 ) ) ) → 𝑥 ∈ ( 𝐴 / 𝑅 ) ) |
3 |
|
simprr |
⊢ ( ( 𝑅 Er 𝑋 ∧ ( 𝑥 ∈ ( 𝐴 / 𝑅 ) ∧ 𝑦 ∈ ( 𝐴 / 𝑅 ) ) ) → 𝑦 ∈ ( 𝐴 / 𝑅 ) ) |
4 |
1 2 3
|
qsdisj |
⊢ ( ( 𝑅 Er 𝑋 ∧ ( 𝑥 ∈ ( 𝐴 / 𝑅 ) ∧ 𝑦 ∈ ( 𝐴 / 𝑅 ) ) ) → ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
5 |
4
|
ralrimivva |
⊢ ( 𝑅 Er 𝑋 → ∀ 𝑥 ∈ ( 𝐴 / 𝑅 ) ∀ 𝑦 ∈ ( 𝐴 / 𝑅 ) ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
6 |
|
id |
⊢ ( 𝑥 = 𝑦 → 𝑥 = 𝑦 ) |
7 |
6
|
disjor |
⊢ ( Disj 𝑥 ∈ ( 𝐴 / 𝑅 ) 𝑥 ↔ ∀ 𝑥 ∈ ( 𝐴 / 𝑅 ) ∀ 𝑦 ∈ ( 𝐴 / 𝑅 ) ( 𝑥 = 𝑦 ∨ ( 𝑥 ∩ 𝑦 ) = ∅ ) ) |
8 |
5 7
|
sylibr |
⊢ ( 𝑅 Er 𝑋 → Disj 𝑥 ∈ ( 𝐴 / 𝑅 ) 𝑥 ) |