Step |
Hyp |
Ref |
Expression |
1 |
|
qsdrng.0 |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
2 |
|
qsdrng.q |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝑀 ) ) |
3 |
|
qsdrng.r |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
4 |
|
qsdrng.2 |
⊢ ( 𝜑 → 𝑀 ∈ ( 2Ideal ‘ 𝑅 ) ) |
5 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
6 |
3 5
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
7 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) → 𝑅 ∈ Ring ) |
8 |
4
|
2idllidld |
⊢ ( 𝜑 → 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) |
9 |
8
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) → 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) |
10 |
|
drngnzr |
⊢ ( 𝑄 ∈ DivRing → 𝑄 ∈ NzRing ) |
11 |
10
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑀 = ( Base ‘ 𝑅 ) ) → 𝑄 ∈ NzRing ) |
12 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
13 |
2 12
|
qusring |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( 2Ideal ‘ 𝑅 ) ) → 𝑄 ∈ Ring ) |
14 |
6 4 13
|
syl2anc |
⊢ ( 𝜑 → 𝑄 ∈ Ring ) |
15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑀 = ( Base ‘ 𝑅 ) ) → 𝑄 ∈ Ring ) |
16 |
|
oveq2 |
⊢ ( 𝑀 = ( Base ‘ 𝑅 ) → ( 𝑅 ~QG 𝑀 ) = ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) |
17 |
16
|
oveq2d |
⊢ ( 𝑀 = ( Base ‘ 𝑅 ) → ( 𝑅 /s ( 𝑅 ~QG 𝑀 ) ) = ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) ) |
18 |
2 17
|
eqtrid |
⊢ ( 𝑀 = ( Base ‘ 𝑅 ) → 𝑄 = ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) ) |
19 |
18
|
fveq2d |
⊢ ( 𝑀 = ( Base ‘ 𝑅 ) → ( Base ‘ 𝑄 ) = ( Base ‘ ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) ) ) |
20 |
6
|
ringgrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
21 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
22 |
|
eqid |
⊢ ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) = ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) |
23 |
21 22
|
qustriv |
⊢ ( 𝑅 ∈ Grp → ( Base ‘ ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) ) = { ( Base ‘ 𝑅 ) } ) |
24 |
20 23
|
syl |
⊢ ( 𝜑 → ( Base ‘ ( 𝑅 /s ( 𝑅 ~QG ( Base ‘ 𝑅 ) ) ) ) = { ( Base ‘ 𝑅 ) } ) |
25 |
19 24
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑀 = ( Base ‘ 𝑅 ) ) → ( Base ‘ 𝑄 ) = { ( Base ‘ 𝑅 ) } ) |
26 |
25
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑀 = ( Base ‘ 𝑅 ) ) → ( ♯ ‘ ( Base ‘ 𝑄 ) ) = ( ♯ ‘ { ( Base ‘ 𝑅 ) } ) ) |
27 |
|
fvex |
⊢ ( Base ‘ 𝑅 ) ∈ V |
28 |
|
hashsng |
⊢ ( ( Base ‘ 𝑅 ) ∈ V → ( ♯ ‘ { ( Base ‘ 𝑅 ) } ) = 1 ) |
29 |
27 28
|
ax-mp |
⊢ ( ♯ ‘ { ( Base ‘ 𝑅 ) } ) = 1 |
30 |
26 29
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑀 = ( Base ‘ 𝑅 ) ) → ( ♯ ‘ ( Base ‘ 𝑄 ) ) = 1 ) |
31 |
|
0ringnnzr |
⊢ ( 𝑄 ∈ Ring → ( ( ♯ ‘ ( Base ‘ 𝑄 ) ) = 1 ↔ ¬ 𝑄 ∈ NzRing ) ) |
32 |
31
|
biimpa |
⊢ ( ( 𝑄 ∈ Ring ∧ ( ♯ ‘ ( Base ‘ 𝑄 ) ) = 1 ) → ¬ 𝑄 ∈ NzRing ) |
33 |
15 30 32
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑀 = ( Base ‘ 𝑅 ) ) → ¬ 𝑄 ∈ NzRing ) |
34 |
33
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑀 = ( Base ‘ 𝑅 ) ) → ¬ 𝑄 ∈ NzRing ) |
35 |
11 34
|
pm2.65da |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) → ¬ 𝑀 = ( Base ‘ 𝑅 ) ) |
36 |
35
|
neqned |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) → 𝑀 ≠ ( Base ‘ 𝑅 ) ) |
37 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) → 𝑀 ⊆ 𝑗 ) |
38 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) → ¬ 𝑗 = 𝑀 ) |
39 |
38
|
neqned |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) → 𝑗 ≠ 𝑀 ) |
40 |
39
|
necomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) → 𝑀 ≠ 𝑗 ) |
41 |
|
pssdifn0 |
⊢ ( ( 𝑀 ⊆ 𝑗 ∧ 𝑀 ≠ 𝑗 ) → ( 𝑗 ∖ 𝑀 ) ≠ ∅ ) |
42 |
37 40 41
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) → ( 𝑗 ∖ 𝑀 ) ≠ ∅ ) |
43 |
|
n0 |
⊢ ( ( 𝑗 ∖ 𝑀 ) ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ ( 𝑗 ∖ 𝑀 ) ) |
44 |
42 43
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) → ∃ 𝑥 𝑥 ∈ ( 𝑗 ∖ 𝑀 ) ) |
45 |
3
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) ∧ 𝑥 ∈ ( 𝑗 ∖ 𝑀 ) ) → 𝑅 ∈ NzRing ) |
46 |
4
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) ∧ 𝑥 ∈ ( 𝑗 ∖ 𝑀 ) ) → 𝑀 ∈ ( 2Ideal ‘ 𝑅 ) ) |
47 |
|
simp-5r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) ∧ 𝑥 ∈ ( 𝑗 ∖ 𝑀 ) ) → 𝑄 ∈ DivRing ) |
48 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) ∧ 𝑥 ∈ ( 𝑗 ∖ 𝑀 ) ) → 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) |
49 |
37
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) ∧ 𝑥 ∈ ( 𝑗 ∖ 𝑀 ) ) → 𝑀 ⊆ 𝑗 ) |
50 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) ∧ 𝑥 ∈ ( 𝑗 ∖ 𝑀 ) ) → 𝑥 ∈ ( 𝑗 ∖ 𝑀 ) ) |
51 |
1 2 45 46 21 47 48 49 50
|
qsdrnglem2 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) ∧ 𝑥 ∈ ( 𝑗 ∖ 𝑀 ) ) → 𝑗 = ( Base ‘ 𝑅 ) ) |
52 |
44 51
|
exlimddv |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) → 𝑗 = ( Base ‘ 𝑅 ) ) |
53 |
52
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀 ⊆ 𝑗 ) → ( ¬ 𝑗 = 𝑀 → 𝑗 = ( Base ‘ 𝑅 ) ) ) |
54 |
53
|
orrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ 𝑀 ⊆ 𝑗 ) → ( 𝑗 = 𝑀 ∨ 𝑗 = ( Base ‘ 𝑅 ) ) ) |
55 |
54
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ) → ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = ( Base ‘ 𝑅 ) ) ) ) |
56 |
55
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) → ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = ( Base ‘ 𝑅 ) ) ) ) |
57 |
21
|
ismxidl |
⊢ ( 𝑅 ∈ Ring → ( 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ↔ ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = ( Base ‘ 𝑅 ) ) ) ) ) ) |
58 |
57
|
biimpar |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ∧ 𝑀 ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑅 ) ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = ( Base ‘ 𝑅 ) ) ) ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
59 |
7 9 36 56 58
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
60 |
1
|
opprring |
⊢ ( 𝑅 ∈ Ring → 𝑂 ∈ Ring ) |
61 |
6 60
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ Ring ) |
62 |
61
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) → 𝑂 ∈ Ring ) |
63 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) → 𝑀 ∈ ( 2Ideal ‘ 𝑅 ) ) |
64 |
63 1
|
2idlridld |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) → 𝑀 ∈ ( LIdeal ‘ 𝑂 ) ) |
65 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑂 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) → 𝑀 ⊆ 𝑗 ) |
66 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑂 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) → ¬ 𝑗 = 𝑀 ) |
67 |
66
|
neqned |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑂 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) → 𝑗 ≠ 𝑀 ) |
68 |
67
|
necomd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑂 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) → 𝑀 ≠ 𝑗 ) |
69 |
65 68 41
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑂 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) → ( 𝑗 ∖ 𝑀 ) ≠ ∅ ) |
70 |
69 43
|
sylib |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑂 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) → ∃ 𝑥 𝑥 ∈ ( 𝑗 ∖ 𝑀 ) ) |
71 |
|
eqid |
⊢ ( oppr ‘ 𝑂 ) = ( oppr ‘ 𝑂 ) |
72 |
|
eqid |
⊢ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) = ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) |
73 |
1
|
opprnzr |
⊢ ( 𝑅 ∈ NzRing → 𝑂 ∈ NzRing ) |
74 |
3 73
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ NzRing ) |
75 |
74
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑂 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) ∧ 𝑥 ∈ ( 𝑗 ∖ 𝑀 ) ) → 𝑂 ∈ NzRing ) |
76 |
1 6
|
oppr2idl |
⊢ ( 𝜑 → ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑂 ) ) |
77 |
4 76
|
eleqtrd |
⊢ ( 𝜑 → 𝑀 ∈ ( 2Ideal ‘ 𝑂 ) ) |
78 |
77
|
ad5antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑂 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) ∧ 𝑥 ∈ ( 𝑗 ∖ 𝑀 ) ) → 𝑀 ∈ ( 2Ideal ‘ 𝑂 ) ) |
79 |
1 21
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
80 |
|
eqid |
⊢ ( oppr ‘ 𝑄 ) = ( oppr ‘ 𝑄 ) |
81 |
80
|
opprdrng |
⊢ ( 𝑄 ∈ DivRing ↔ ( oppr ‘ 𝑄 ) ∈ DivRing ) |
82 |
21 1 2 6 4
|
opprqusdrng |
⊢ ( 𝜑 → ( ( oppr ‘ 𝑄 ) ∈ DivRing ↔ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ∈ DivRing ) ) |
83 |
82
|
biimpa |
⊢ ( ( 𝜑 ∧ ( oppr ‘ 𝑄 ) ∈ DivRing ) → ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ∈ DivRing ) |
84 |
81 83
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) → ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ∈ DivRing ) |
85 |
84
|
ad4antr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑂 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) ∧ 𝑥 ∈ ( 𝑗 ∖ 𝑀 ) ) → ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ∈ DivRing ) |
86 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑂 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) ∧ 𝑥 ∈ ( 𝑗 ∖ 𝑀 ) ) → 𝑗 ∈ ( LIdeal ‘ 𝑂 ) ) |
87 |
65
|
adantr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑂 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) ∧ 𝑥 ∈ ( 𝑗 ∖ 𝑀 ) ) → 𝑀 ⊆ 𝑗 ) |
88 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑂 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) ∧ 𝑥 ∈ ( 𝑗 ∖ 𝑀 ) ) → 𝑥 ∈ ( 𝑗 ∖ 𝑀 ) ) |
89 |
71 72 75 78 79 85 86 87 88
|
qsdrnglem2 |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑂 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) ∧ 𝑥 ∈ ( 𝑗 ∖ 𝑀 ) ) → 𝑗 = ( Base ‘ 𝑅 ) ) |
90 |
70 89
|
exlimddv |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑂 ) ) ∧ 𝑀 ⊆ 𝑗 ) ∧ ¬ 𝑗 = 𝑀 ) → 𝑗 = ( Base ‘ 𝑅 ) ) |
91 |
90
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑂 ) ) ∧ 𝑀 ⊆ 𝑗 ) → ( ¬ 𝑗 = 𝑀 → 𝑗 = ( Base ‘ 𝑅 ) ) ) |
92 |
91
|
orrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑂 ) ) ∧ 𝑀 ⊆ 𝑗 ) → ( 𝑗 = 𝑀 ∨ 𝑗 = ( Base ‘ 𝑅 ) ) ) |
93 |
92
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) ∧ 𝑗 ∈ ( LIdeal ‘ 𝑂 ) ) → ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = ( Base ‘ 𝑅 ) ) ) ) |
94 |
93
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) → ∀ 𝑗 ∈ ( LIdeal ‘ 𝑂 ) ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = ( Base ‘ 𝑅 ) ) ) ) |
95 |
79
|
ismxidl |
⊢ ( 𝑂 ∈ Ring → ( 𝑀 ∈ ( MaxIdeal ‘ 𝑂 ) ↔ ( 𝑀 ∈ ( LIdeal ‘ 𝑂 ) ∧ 𝑀 ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑂 ) ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = ( Base ‘ 𝑅 ) ) ) ) ) ) |
96 |
95
|
biimpar |
⊢ ( ( 𝑂 ∈ Ring ∧ ( 𝑀 ∈ ( LIdeal ‘ 𝑂 ) ∧ 𝑀 ≠ ( Base ‘ 𝑅 ) ∧ ∀ 𝑗 ∈ ( LIdeal ‘ 𝑂 ) ( 𝑀 ⊆ 𝑗 → ( 𝑗 = 𝑀 ∨ 𝑗 = ( Base ‘ 𝑅 ) ) ) ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑂 ) ) |
97 |
62 64 36 94 96
|
syl13anc |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑂 ) ) |
98 |
59 97
|
jca |
⊢ ( ( 𝜑 ∧ 𝑄 ∈ DivRing ) → ( 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑂 ) ) ) |
99 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑂 ) ) ) → 𝑅 ∈ NzRing ) |
100 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑂 ) ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
101 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑂 ) ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑂 ) ) |
102 |
1 2 99 100 101
|
qsdrngi |
⊢ ( ( 𝜑 ∧ ( 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑂 ) ) ) → 𝑄 ∈ DivRing ) |
103 |
98 102
|
impbida |
⊢ ( 𝜑 → ( 𝑄 ∈ DivRing ↔ ( 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑂 ) ) ) ) |