Step |
Hyp |
Ref |
Expression |
1 |
|
qsdrng.0 |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
2 |
|
qsdrng.q |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝑀 ) ) |
3 |
|
qsdrng.r |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
4 |
|
qsdrngi.1 |
⊢ ( 𝜑 → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
5 |
|
qsdrngi.2 |
⊢ ( 𝜑 → 𝑀 ∈ ( MaxIdeal ‘ 𝑂 ) ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
7 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
8 |
3 7
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
9 |
6
|
mxidlidl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) |
10 |
8 4 9
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) |
11 |
1
|
opprring |
⊢ ( 𝑅 ∈ Ring → 𝑂 ∈ Ring ) |
12 |
8 11
|
syl |
⊢ ( 𝜑 → 𝑂 ∈ Ring ) |
13 |
|
eqid |
⊢ ( Base ‘ 𝑂 ) = ( Base ‘ 𝑂 ) |
14 |
13
|
mxidlidl |
⊢ ( ( 𝑂 ∈ Ring ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑂 ) ) → 𝑀 ∈ ( LIdeal ‘ 𝑂 ) ) |
15 |
12 5 14
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ∈ ( LIdeal ‘ 𝑂 ) ) |
16 |
10 15
|
elind |
⊢ ( 𝜑 → 𝑀 ∈ ( ( LIdeal ‘ 𝑅 ) ∩ ( LIdeal ‘ 𝑂 ) ) ) |
17 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
18 |
|
eqid |
⊢ ( LIdeal ‘ 𝑂 ) = ( LIdeal ‘ 𝑂 ) |
19 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
20 |
17 1 18 19
|
2idlval |
⊢ ( 2Ideal ‘ 𝑅 ) = ( ( LIdeal ‘ 𝑅 ) ∩ ( LIdeal ‘ 𝑂 ) ) |
21 |
16 20
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ ( 2Ideal ‘ 𝑅 ) ) |
22 |
6
|
mxidlnr |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) → 𝑀 ≠ ( Base ‘ 𝑅 ) ) |
23 |
8 4 22
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ≠ ( Base ‘ 𝑅 ) ) |
24 |
2 6 8 3 21 23
|
qsnzr |
⊢ ( 𝜑 → 𝑄 ∈ NzRing ) |
25 |
|
eqid |
⊢ ( 1r ‘ 𝑄 ) = ( 1r ‘ 𝑄 ) |
26 |
|
eqid |
⊢ ( 0g ‘ 𝑄 ) = ( 0g ‘ 𝑄 ) |
27 |
25 26
|
nzrnz |
⊢ ( 𝑄 ∈ NzRing → ( 1r ‘ 𝑄 ) ≠ ( 0g ‘ 𝑄 ) ) |
28 |
24 27
|
syl |
⊢ ( 𝜑 → ( 1r ‘ 𝑄 ) ≠ ( 0g ‘ 𝑄 ) ) |
29 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
30 |
|
eqid |
⊢ ( .r ‘ 𝑄 ) = ( .r ‘ 𝑄 ) |
31 |
|
eqid |
⊢ ( Unit ‘ 𝑄 ) = ( Unit ‘ 𝑄 ) |
32 |
2 19
|
qusring |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( 2Ideal ‘ 𝑅 ) ) → 𝑄 ∈ Ring ) |
33 |
8 21 32
|
syl2anc |
⊢ ( 𝜑 → 𝑄 ∈ Ring ) |
34 |
33
|
ad10antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) → 𝑄 ∈ Ring ) |
35 |
34
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑄 ∈ Ring ) |
36 |
|
eldifi |
⊢ ( 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) → 𝑢 ∈ ( Base ‘ 𝑄 ) ) |
37 |
36
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) → 𝑢 ∈ ( Base ‘ 𝑄 ) ) |
38 |
37
|
ad10antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑢 ∈ ( Base ‘ 𝑄 ) ) |
39 |
|
ovex |
⊢ ( 𝑅 ~QG 𝑀 ) ∈ V |
40 |
39
|
ecelqsi |
⊢ ( 𝑟 ∈ ( Base ‘ 𝑅 ) → [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) ) |
41 |
40
|
ad4antlr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) ) |
42 |
2
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝑀 ) ) ) |
43 |
|
eqidd |
⊢ ( 𝜑 → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) ) |
44 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑅 ~QG 𝑀 ) ∈ V ) |
45 |
42 43 44 3
|
qusbas |
⊢ ( 𝜑 → ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) = ( Base ‘ 𝑄 ) ) |
46 |
45
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) → ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) = ( Base ‘ 𝑄 ) ) |
47 |
46
|
ad10antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) = ( Base ‘ 𝑄 ) ) |
48 |
41 47
|
eleqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ∈ ( Base ‘ 𝑄 ) ) |
49 |
39
|
ecelqsi |
⊢ ( 𝑠 ∈ ( Base ‘ 𝑅 ) → [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) ) |
50 |
49
|
ad2antlr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) ) |
51 |
50 47
|
eleqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ∈ ( Base ‘ 𝑄 ) ) |
52 |
|
simpllr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) |
53 |
|
simp-9r |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) |
54 |
53
|
eqcomd |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) = 𝑢 ) |
55 |
52 54
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ( .r ‘ 𝑄 ) 𝑢 ) ) |
56 |
|
simp-7r |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) |
57 |
55 56
|
eqtr3d |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ( .r ‘ 𝑄 ) 𝑢 ) = ( 1r ‘ 𝑄 ) ) |
58 |
|
eqid |
⊢ ( oppr ‘ 𝑄 ) = ( oppr ‘ 𝑄 ) |
59 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝑄 ) ) = ( .r ‘ ( oppr ‘ 𝑄 ) ) |
60 |
29 30 58 59
|
opprmul |
⊢ ( [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑢 ) = ( 𝑢 ( .r ‘ 𝑄 ) [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) |
61 |
|
simp-5r |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) |
62 |
8
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑅 ∈ Ring ) |
63 |
62
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑅 ∈ Ring ) |
64 |
21
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑀 ∈ ( 2Ideal ‘ 𝑅 ) ) |
65 |
64
|
ad8antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑀 ∈ ( 2Ideal ‘ 𝑅 ) ) |
66 |
6 1 2 63 65 29 51 38
|
opprqusmulr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑢 ) = ( [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) 𝑢 ) ) |
67 |
|
simpr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) |
68 |
6 17
|
lidlss |
⊢ ( 𝑀 ∈ ( LIdeal ‘ 𝑅 ) → 𝑀 ⊆ ( Base ‘ 𝑅 ) ) |
69 |
10 68
|
syl |
⊢ ( 𝜑 → 𝑀 ⊆ ( Base ‘ 𝑅 ) ) |
70 |
1 6
|
oppreqg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ⊆ ( Base ‘ 𝑅 ) ) → ( 𝑅 ~QG 𝑀 ) = ( 𝑂 ~QG 𝑀 ) ) |
71 |
8 69 70
|
syl2anc |
⊢ ( 𝜑 → ( 𝑅 ~QG 𝑀 ) = ( 𝑂 ~QG 𝑀 ) ) |
72 |
71
|
ad10antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) → ( 𝑅 ~QG 𝑀 ) = ( 𝑂 ~QG 𝑀 ) ) |
73 |
72
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑅 ~QG 𝑀 ) = ( 𝑂 ~QG 𝑀 ) ) |
74 |
73
|
eceq2d |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) = [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) |
75 |
53 74
|
eqtr2d |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) = 𝑢 ) |
76 |
67 75
|
oveq12d |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) 𝑢 ) ) |
77 |
66 76
|
eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑢 ) = ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) ) |
78 |
58 25
|
oppr1 |
⊢ ( 1r ‘ 𝑄 ) = ( 1r ‘ ( oppr ‘ 𝑄 ) ) |
79 |
6 1 2 8 21
|
opprqus1r |
⊢ ( 𝜑 → ( 1r ‘ ( oppr ‘ 𝑄 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) |
80 |
78 79
|
eqtrid |
⊢ ( 𝜑 → ( 1r ‘ 𝑄 ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) |
81 |
80
|
ad10antr |
⊢ ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) → ( 1r ‘ 𝑄 ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) |
82 |
81
|
adantr |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 1r ‘ 𝑄 ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) |
83 |
61 77 82
|
3eqtr4d |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ( .r ‘ ( oppr ‘ 𝑄 ) ) 𝑢 ) = ( 1r ‘ 𝑄 ) ) |
84 |
60 83
|
eqtr3id |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑢 ( .r ‘ 𝑄 ) [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) |
85 |
29 26 25 30 31 35 38 48 51 57 84
|
ringinveu |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) |
86 |
85 67 52
|
3eqtr4rd |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑣 = 𝑤 ) |
87 |
86
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑢 ( .r ‘ 𝑄 ) 𝑣 ) = ( 𝑢 ( .r ‘ 𝑄 ) 𝑤 ) ) |
88 |
67
|
oveq2d |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑢 ( .r ‘ 𝑄 ) 𝑤 ) = ( 𝑢 ( .r ‘ 𝑄 ) [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) ) |
89 |
87 88 84
|
3eqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑠 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑢 ( .r ‘ 𝑄 ) 𝑣 ) = ( 1r ‘ 𝑄 ) ) |
90 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) |
91 |
71
|
qseq2d |
⊢ ( 𝜑 → ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) = ( ( Base ‘ 𝑅 ) / ( 𝑂 ~QG 𝑀 ) ) ) |
92 |
91
|
ad9antr |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) → ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) = ( ( Base ‘ 𝑅 ) / ( 𝑂 ~QG 𝑀 ) ) ) |
93 |
|
eqidd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) = ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) |
94 |
1 6
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) |
95 |
94
|
a1i |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) ) |
96 |
|
ovexd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑂 ~QG 𝑀 ) ∈ V ) |
97 |
1
|
fvexi |
⊢ 𝑂 ∈ V |
98 |
97
|
a1i |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑂 ∈ V ) |
99 |
93 95 96 98
|
qusbas |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) → ( ( Base ‘ 𝑅 ) / ( 𝑂 ~QG 𝑀 ) ) = ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) |
100 |
92 99
|
eqtr2d |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) → ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) = ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) ) |
101 |
90 100
|
eleqtrd |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑤 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) ) |
102 |
|
elqsi |
⊢ ( 𝑤 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) → ∃ 𝑠 ∈ ( Base ‘ 𝑅 ) 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) |
103 |
101 102
|
syl |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) → ∃ 𝑠 ∈ ( Base ‘ 𝑅 ) 𝑤 = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) |
104 |
89 103
|
r19.29a |
⊢ ( ( ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ 𝑟 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑢 ( .r ‘ 𝑄 ) 𝑣 ) = ( 1r ‘ 𝑄 ) ) |
105 |
|
simp-4r |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) → 𝑣 ∈ ( Base ‘ 𝑄 ) ) |
106 |
46
|
ad6antr |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) → ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) = ( Base ‘ 𝑄 ) ) |
107 |
105 106
|
eleqtrrd |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) → 𝑣 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) ) |
108 |
|
elqsi |
⊢ ( 𝑣 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) → ∃ 𝑟 ∈ ( Base ‘ 𝑅 ) 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) |
109 |
107 108
|
syl |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) → ∃ 𝑟 ∈ ( Base ‘ 𝑅 ) 𝑣 = [ 𝑟 ] ( 𝑅 ~QG 𝑀 ) ) |
110 |
104 109
|
r19.29a |
⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ∧ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) ∧ ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) → ( 𝑢 ( .r ‘ 𝑄 ) 𝑣 ) = ( 1r ‘ 𝑄 ) ) |
111 |
|
eqid |
⊢ ( oppr ‘ 𝑂 ) = ( oppr ‘ 𝑂 ) |
112 |
|
eqid |
⊢ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) = ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) |
113 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑅 ∈ NzRing ) |
114 |
1
|
opprnzr |
⊢ ( 𝑅 ∈ NzRing → 𝑂 ∈ NzRing ) |
115 |
113 114
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑂 ∈ NzRing ) |
116 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑂 ) ) |
117 |
4
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑀 ∈ ( MaxIdeal ‘ 𝑅 ) ) |
118 |
1 62 117
|
opprmxidlabs |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑀 ∈ ( MaxIdeal ‘ ( oppr ‘ 𝑂 ) ) ) |
119 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
120 |
94
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → ( Base ‘ 𝑅 ) = ( Base ‘ 𝑂 ) ) |
121 |
119 120
|
eleqtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑥 ∈ ( Base ‘ 𝑂 ) ) |
122 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑥 ∈ 𝑀 ) → 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) |
123 |
8
|
ringgrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
124 |
123
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑥 ∈ 𝑀 ) → 𝑅 ∈ Grp ) |
125 |
|
lidlnsg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑀 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
126 |
8 10 125
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
127 |
|
nsgsubg |
⊢ ( 𝑀 ∈ ( NrmSGrp ‘ 𝑅 ) → 𝑀 ∈ ( SubGrp ‘ 𝑅 ) ) |
128 |
126 127
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( SubGrp ‘ 𝑅 ) ) |
129 |
128
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑥 ∈ 𝑀 ) → 𝑀 ∈ ( SubGrp ‘ 𝑅 ) ) |
130 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑥 ∈ 𝑀 ) → 𝑥 ∈ 𝑀 ) |
131 |
|
eqid |
⊢ ( 𝑅 ~QG 𝑀 ) = ( 𝑅 ~QG 𝑀 ) |
132 |
131
|
eqg0el |
⊢ ( ( 𝑅 ∈ Grp ∧ 𝑀 ∈ ( SubGrp ‘ 𝑅 ) ) → ( [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) = 𝑀 ↔ 𝑥 ∈ 𝑀 ) ) |
133 |
132
|
biimpar |
⊢ ( ( ( 𝑅 ∈ Grp ∧ 𝑀 ∈ ( SubGrp ‘ 𝑅 ) ) ∧ 𝑥 ∈ 𝑀 ) → [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) = 𝑀 ) |
134 |
124 129 130 133
|
syl21anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑥 ∈ 𝑀 ) → [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) = 𝑀 ) |
135 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
136 |
6 131 135
|
eqgid |
⊢ ( 𝑀 ∈ ( SubGrp ‘ 𝑅 ) → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑀 ) = 𝑀 ) |
137 |
129 136
|
syl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑥 ∈ 𝑀 ) → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑀 ) = 𝑀 ) |
138 |
134 137
|
eqtr4d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑥 ∈ 𝑀 ) → [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) = [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑀 ) ) |
139 |
2 135
|
qus0 |
⊢ ( 𝑀 ∈ ( NrmSGrp ‘ 𝑅 ) → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑀 ) = ( 0g ‘ 𝑄 ) ) |
140 |
126 139
|
syl |
⊢ ( 𝜑 → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑀 ) = ( 0g ‘ 𝑄 ) ) |
141 |
140
|
ad4antr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑥 ∈ 𝑀 ) → [ ( 0g ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑀 ) = ( 0g ‘ 𝑄 ) ) |
142 |
122 138 141
|
3eqtrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑥 ∈ 𝑀 ) → 𝑢 = ( 0g ‘ 𝑄 ) ) |
143 |
|
eldifsnneq |
⊢ ( 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) → ¬ 𝑢 = ( 0g ‘ 𝑄 ) ) |
144 |
143
|
ad4antlr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑥 ∈ 𝑀 ) → ¬ 𝑢 = ( 0g ‘ 𝑄 ) ) |
145 |
142 144
|
pm2.65da |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → ¬ 𝑥 ∈ 𝑀 ) |
146 |
111 112 115 116 118 121 145
|
qsdrngilem |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → ∃ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) |
147 |
146
|
ad2antrr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) → ∃ 𝑤 ∈ ( Base ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ( 𝑤 ( .r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) [ 𝑥 ] ( 𝑂 ~QG 𝑀 ) ) = ( 1r ‘ ( 𝑂 /s ( 𝑂 ~QG 𝑀 ) ) ) ) |
148 |
110 147
|
r19.29a |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) → ( 𝑢 ( .r ‘ 𝑄 ) 𝑣 ) = ( 1r ‘ 𝑄 ) ) |
149 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) → 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) |
150 |
149
|
oveq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) → ( 𝑣 ( .r ‘ 𝑄 ) 𝑢 ) = ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ) |
151 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) → ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) |
152 |
150 151
|
eqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) → ( 𝑣 ( .r ‘ 𝑄 ) 𝑢 ) = ( 1r ‘ 𝑄 ) ) |
153 |
148 152
|
jca |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ 𝑣 ∈ ( Base ‘ 𝑄 ) ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) → ( ( 𝑢 ( .r ‘ 𝑄 ) 𝑣 ) = ( 1r ‘ 𝑄 ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) 𝑢 ) = ( 1r ‘ 𝑄 ) ) ) |
154 |
153
|
anasss |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) ∧ ( 𝑣 ∈ ( Base ‘ 𝑄 ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) ) → ( ( 𝑢 ( .r ‘ 𝑄 ) 𝑣 ) = ( 1r ‘ 𝑄 ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) 𝑢 ) = ( 1r ‘ 𝑄 ) ) ) |
155 |
1 2 113 117 116 119 145
|
qsdrngilem |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → ∃ 𝑣 ∈ ( Base ‘ 𝑄 ) ( 𝑣 ( .r ‘ 𝑄 ) [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) |
156 |
154 155
|
reximddv |
⊢ ( ( ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑅 ) ) ∧ 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) → ∃ 𝑣 ∈ ( Base ‘ 𝑄 ) ( ( 𝑢 ( .r ‘ 𝑄 ) 𝑣 ) = ( 1r ‘ 𝑄 ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) 𝑢 ) = ( 1r ‘ 𝑄 ) ) ) |
157 |
37 46
|
eleqtrrd |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) → 𝑢 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) ) |
158 |
|
elqsi |
⊢ ( 𝑢 ∈ ( ( Base ‘ 𝑅 ) / ( 𝑅 ~QG 𝑀 ) ) → ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) |
159 |
157 158
|
syl |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) → ∃ 𝑥 ∈ ( Base ‘ 𝑅 ) 𝑢 = [ 𝑥 ] ( 𝑅 ~QG 𝑀 ) ) |
160 |
156 159
|
r19.29a |
⊢ ( ( 𝜑 ∧ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ) → ∃ 𝑣 ∈ ( Base ‘ 𝑄 ) ( ( 𝑢 ( .r ‘ 𝑄 ) 𝑣 ) = ( 1r ‘ 𝑄 ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) 𝑢 ) = ( 1r ‘ 𝑄 ) ) ) |
161 |
160
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ∃ 𝑣 ∈ ( Base ‘ 𝑄 ) ( ( 𝑢 ( .r ‘ 𝑄 ) 𝑣 ) = ( 1r ‘ 𝑄 ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) 𝑢 ) = ( 1r ‘ 𝑄 ) ) ) |
162 |
29 26 25 30 31 33
|
isdrng4 |
⊢ ( 𝜑 → ( 𝑄 ∈ DivRing ↔ ( ( 1r ‘ 𝑄 ) ≠ ( 0g ‘ 𝑄 ) ∧ ∀ 𝑢 ∈ ( ( Base ‘ 𝑄 ) ∖ { ( 0g ‘ 𝑄 ) } ) ∃ 𝑣 ∈ ( Base ‘ 𝑄 ) ( ( 𝑢 ( .r ‘ 𝑄 ) 𝑣 ) = ( 1r ‘ 𝑄 ) ∧ ( 𝑣 ( .r ‘ 𝑄 ) 𝑢 ) = ( 1r ‘ 𝑄 ) ) ) ) ) |
163 |
28 161 162
|
mpbir2and |
⊢ ( 𝜑 → 𝑄 ∈ DivRing ) |