Step |
Hyp |
Ref |
Expression |
1 |
|
qsdrng.0 |
⊢ 𝑂 = ( oppr ‘ 𝑅 ) |
2 |
|
qsdrng.q |
⊢ 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝑀 ) ) |
3 |
|
qsdrng.r |
⊢ ( 𝜑 → 𝑅 ∈ NzRing ) |
4 |
|
qsdrng.2 |
⊢ ( 𝜑 → 𝑀 ∈ ( 2Ideal ‘ 𝑅 ) ) |
5 |
|
qsdrnglem2.1 |
⊢ 𝐵 = ( Base ‘ 𝑅 ) |
6 |
|
qsdrnglem2.q |
⊢ ( 𝜑 → 𝑄 ∈ DivRing ) |
7 |
|
qsdrnglem2.j |
⊢ ( 𝜑 → 𝐽 ∈ ( LIdeal ‘ 𝑅 ) ) |
8 |
|
qsdrnglem2.m |
⊢ ( 𝜑 → 𝑀 ⊆ 𝐽 ) |
9 |
|
qsdrnglem2.x |
⊢ ( 𝜑 → 𝑋 ∈ ( 𝐽 ∖ 𝑀 ) ) |
10 |
|
nzrring |
⊢ ( 𝑅 ∈ NzRing → 𝑅 ∈ Ring ) |
11 |
3 10
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
12 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑅 ∈ Ring ) |
13 |
7
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝐽 ∈ ( LIdeal ‘ 𝑅 ) ) |
14 |
12
|
ringgrpd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑅 ∈ Grp ) |
15 |
|
eqid |
⊢ ( LIdeal ‘ 𝑅 ) = ( LIdeal ‘ 𝑅 ) |
16 |
5 15
|
lidlss |
⊢ ( 𝐽 ∈ ( LIdeal ‘ 𝑅 ) → 𝐽 ⊆ 𝐵 ) |
17 |
13 16
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝐽 ⊆ 𝐵 ) |
18 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑠 ∈ 𝐵 ) |
19 |
9
|
eldifad |
⊢ ( 𝜑 → 𝑋 ∈ 𝐽 ) |
20 |
19
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑋 ∈ 𝐽 ) |
21 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
22 |
15 5 21
|
lidlmcl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐽 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( 𝑠 ∈ 𝐵 ∧ 𝑋 ∈ 𝐽 ) ) → ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ∈ 𝐽 ) |
23 |
12 13 18 20 22
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ∈ 𝐽 ) |
24 |
17 23
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ∈ 𝐵 ) |
25 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
26 |
5 25
|
ringidcl |
⊢ ( 𝑅 ∈ Ring → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
27 |
12 26
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 1r ‘ 𝑅 ) ∈ 𝐵 ) |
28 |
|
eqid |
⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) |
29 |
|
eqid |
⊢ ( invg ‘ 𝑅 ) = ( invg ‘ 𝑅 ) |
30 |
5 28 29
|
grpasscan1 |
⊢ ( ( 𝑅 ∈ Grp ∧ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ∈ 𝐵 ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ) → ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( 1r ‘ 𝑅 ) ) |
31 |
14 24 27 30
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) = ( 1r ‘ 𝑅 ) ) |
32 |
8
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑀 ⊆ 𝐽 ) |
33 |
7 16
|
syl |
⊢ ( 𝜑 → 𝐽 ⊆ 𝐵 ) |
34 |
8 33
|
sstrd |
⊢ ( 𝜑 → 𝑀 ⊆ 𝐵 ) |
35 |
34
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑀 ⊆ 𝐵 ) |
36 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) |
37 |
36
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) ( .r ‘ 𝑄 ) [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = ( [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ( .r ‘ 𝑄 ) [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) ) |
38 |
|
eqid |
⊢ ( Base ‘ 𝑄 ) = ( Base ‘ 𝑄 ) |
39 |
|
eqid |
⊢ ( 0g ‘ 𝑄 ) = ( 0g ‘ 𝑄 ) |
40 |
|
eqid |
⊢ ( .r ‘ 𝑄 ) = ( .r ‘ 𝑄 ) |
41 |
|
eqid |
⊢ ( 1r ‘ 𝑄 ) = ( 1r ‘ 𝑄 ) |
42 |
|
eqid |
⊢ ( invr ‘ 𝑄 ) = ( invr ‘ 𝑄 ) |
43 |
6
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑄 ∈ DivRing ) |
44 |
33 19
|
sseldd |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
45 |
|
ovex |
⊢ ( 𝑅 ~QG 𝑀 ) ∈ V |
46 |
45
|
ecelqsi |
⊢ ( 𝑋 ∈ 𝐵 → [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ∈ ( 𝐵 / ( 𝑅 ~QG 𝑀 ) ) ) |
47 |
44 46
|
syl |
⊢ ( 𝜑 → [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ∈ ( 𝐵 / ( 𝑅 ~QG 𝑀 ) ) ) |
48 |
2
|
a1i |
⊢ ( 𝜑 → 𝑄 = ( 𝑅 /s ( 𝑅 ~QG 𝑀 ) ) ) |
49 |
5
|
a1i |
⊢ ( 𝜑 → 𝐵 = ( Base ‘ 𝑅 ) ) |
50 |
45
|
a1i |
⊢ ( 𝜑 → ( 𝑅 ~QG 𝑀 ) ∈ V ) |
51 |
48 49 50 3
|
qusbas |
⊢ ( 𝜑 → ( 𝐵 / ( 𝑅 ~QG 𝑀 ) ) = ( Base ‘ 𝑄 ) ) |
52 |
47 51
|
eleqtrd |
⊢ ( 𝜑 → [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ∈ ( Base ‘ 𝑄 ) ) |
53 |
52
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ∈ ( Base ‘ 𝑄 ) ) |
54 |
4
|
2idllidld |
⊢ ( 𝜑 → 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) |
55 |
15
|
lidlsubg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑀 ∈ ( SubGrp ‘ 𝑅 ) ) |
56 |
11 54 55
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ∈ ( SubGrp ‘ 𝑅 ) ) |
57 |
|
eqid |
⊢ ( 𝑅 ~QG 𝑀 ) = ( 𝑅 ~QG 𝑀 ) |
58 |
5 57
|
eqger |
⊢ ( 𝑀 ∈ ( SubGrp ‘ 𝑅 ) → ( 𝑅 ~QG 𝑀 ) Er 𝐵 ) |
59 |
56 58
|
syl |
⊢ ( 𝜑 → ( 𝑅 ~QG 𝑀 ) Er 𝐵 ) |
60 |
|
ecref |
⊢ ( ( ( 𝑅 ~QG 𝑀 ) Er 𝐵 ∧ 𝑋 ∈ 𝐵 ) → 𝑋 ∈ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) |
61 |
59 44 60
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ∈ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) |
62 |
9
|
eldifbd |
⊢ ( 𝜑 → ¬ 𝑋 ∈ 𝑀 ) |
63 |
|
nelne1 |
⊢ ( ( 𝑋 ∈ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ∧ ¬ 𝑋 ∈ 𝑀 ) → [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ≠ 𝑀 ) |
64 |
61 62 63
|
syl2anc |
⊢ ( 𝜑 → [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ≠ 𝑀 ) |
65 |
|
lidlnsg |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( LIdeal ‘ 𝑅 ) ) → 𝑀 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
66 |
11 54 65
|
syl2anc |
⊢ ( 𝜑 → 𝑀 ∈ ( NrmSGrp ‘ 𝑅 ) ) |
67 |
2
|
qus0g |
⊢ ( 𝑀 ∈ ( NrmSGrp ‘ 𝑅 ) → ( 0g ‘ 𝑄 ) = 𝑀 ) |
68 |
66 67
|
syl |
⊢ ( 𝜑 → ( 0g ‘ 𝑄 ) = 𝑀 ) |
69 |
64 68
|
neeqtrrd |
⊢ ( 𝜑 → [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ≠ ( 0g ‘ 𝑄 ) ) |
70 |
69
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ≠ ( 0g ‘ 𝑄 ) ) |
71 |
38 39 40 41 42 43 53 70
|
drnginvrld |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) ( .r ‘ 𝑄 ) [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = ( 1r ‘ 𝑄 ) ) |
72 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑀 ∈ ( 2Ideal ‘ 𝑅 ) ) |
73 |
44
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑋 ∈ 𝐵 ) |
74 |
2 5 21 40 12 72 18 73
|
qusmul2 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ( .r ‘ 𝑄 ) [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ] ( 𝑅 ~QG 𝑀 ) ) |
75 |
37 71 74
|
3eqtr3rd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ] ( 𝑅 ~QG 𝑀 ) = ( 1r ‘ 𝑄 ) ) |
76 |
|
eqid |
⊢ ( 2Ideal ‘ 𝑅 ) = ( 2Ideal ‘ 𝑅 ) |
77 |
2 76 25
|
qus1 |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( 2Ideal ‘ 𝑅 ) ) → ( 𝑄 ∈ Ring ∧ [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑀 ) = ( 1r ‘ 𝑄 ) ) ) |
78 |
77
|
simprd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ∈ ( 2Ideal ‘ 𝑅 ) ) → [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑀 ) = ( 1r ‘ 𝑄 ) ) |
79 |
12 72 78
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑀 ) = ( 1r ‘ 𝑄 ) ) |
80 |
75 79
|
eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → [ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ] ( 𝑅 ~QG 𝑀 ) = [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑀 ) ) |
81 |
56
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝑀 ∈ ( SubGrp ‘ 𝑅 ) ) |
82 |
81 58
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑅 ~QG 𝑀 ) Er 𝐵 ) |
83 |
82 27
|
erth2 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( 𝑅 ~QG 𝑀 ) ( 1r ‘ 𝑅 ) ↔ [ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ] ( 𝑅 ~QG 𝑀 ) = [ ( 1r ‘ 𝑅 ) ] ( 𝑅 ~QG 𝑀 ) ) ) |
84 |
80 83
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( 𝑅 ~QG 𝑀 ) ( 1r ‘ 𝑅 ) ) |
85 |
5 29 28 57
|
eqgval |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑀 ⊆ 𝐵 ) → ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( 𝑅 ~QG 𝑀 ) ( 1r ‘ 𝑅 ) ↔ ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ∈ 𝐵 ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ 𝑀 ) ) ) |
86 |
85
|
biimpa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ⊆ 𝐵 ) ∧ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( 𝑅 ~QG 𝑀 ) ( 1r ‘ 𝑅 ) ) → ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ∈ 𝐵 ∧ ( 1r ‘ 𝑅 ) ∈ 𝐵 ∧ ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ 𝑀 ) ) |
87 |
86
|
simp3d |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝑀 ⊆ 𝐵 ) ∧ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( 𝑅 ~QG 𝑀 ) ( 1r ‘ 𝑅 ) ) → ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ 𝑀 ) |
88 |
12 35 84 87
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ 𝑀 ) |
89 |
32 88
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ 𝐽 ) |
90 |
15 28
|
lidlacl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐽 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ∈ 𝐽 ∧ ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ∈ 𝐽 ) ) → ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ∈ 𝐽 ) |
91 |
12 13 23 89 90
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ( +g ‘ 𝑅 ) ( ( ( invg ‘ 𝑅 ) ‘ ( 𝑠 ( .r ‘ 𝑅 ) 𝑋 ) ) ( +g ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) ∈ 𝐽 ) |
92 |
31 91
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → ( 1r ‘ 𝑅 ) ∈ 𝐽 ) |
93 |
15 5 25
|
lidl1el |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐽 ∈ ( LIdeal ‘ 𝑅 ) ) → ( ( 1r ‘ 𝑅 ) ∈ 𝐽 ↔ 𝐽 = 𝐵 ) ) |
94 |
93
|
biimpa |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐽 ∈ ( LIdeal ‘ 𝑅 ) ) ∧ ( 1r ‘ 𝑅 ) ∈ 𝐽 ) → 𝐽 = 𝐵 ) |
95 |
12 13 92 94
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ 𝐵 ) ∧ ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) → 𝐽 = 𝐵 ) |
96 |
38 39 42 6 52 69
|
drnginvrcld |
⊢ ( 𝜑 → ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) ∈ ( Base ‘ 𝑄 ) ) |
97 |
96 51
|
eleqtrrd |
⊢ ( 𝜑 → ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) ∈ ( 𝐵 / ( 𝑅 ~QG 𝑀 ) ) ) |
98 |
|
elqsi |
⊢ ( ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) ∈ ( 𝐵 / ( 𝑅 ~QG 𝑀 ) ) → ∃ 𝑠 ∈ 𝐵 ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) |
99 |
97 98
|
syl |
⊢ ( 𝜑 → ∃ 𝑠 ∈ 𝐵 ( ( invr ‘ 𝑄 ) ‘ [ 𝑋 ] ( 𝑅 ~QG 𝑀 ) ) = [ 𝑠 ] ( 𝑅 ~QG 𝑀 ) ) |
100 |
95 99
|
r19.29a |
⊢ ( 𝜑 → 𝐽 = 𝐵 ) |