Step |
Hyp |
Ref |
Expression |
1 |
|
eqid |
⊢ ( 𝐴 / 𝑅 ) = ( 𝐴 / 𝑅 ) |
2 |
|
eleq2 |
⊢ ( [ 𝑥 ] 𝑅 = 𝐵 → ( 𝐶 ∈ [ 𝑥 ] 𝑅 ↔ 𝐶 ∈ 𝐵 ) ) |
3 |
|
eqeq1 |
⊢ ( [ 𝑥 ] 𝑅 = 𝐵 → ( [ 𝑥 ] 𝑅 = [ 𝐶 ] 𝑅 ↔ 𝐵 = [ 𝐶 ] 𝑅 ) ) |
4 |
2 3
|
imbi12d |
⊢ ( [ 𝑥 ] 𝑅 = 𝐵 → ( ( 𝐶 ∈ [ 𝑥 ] 𝑅 → [ 𝑥 ] 𝑅 = [ 𝐶 ] 𝑅 ) ↔ ( 𝐶 ∈ 𝐵 → 𝐵 = [ 𝐶 ] 𝑅 ) ) ) |
5 |
|
elecg |
⊢ ( ( 𝐶 ∈ [ 𝑥 ] 𝑅 ∧ 𝑥 ∈ V ) → ( 𝐶 ∈ [ 𝑥 ] 𝑅 ↔ 𝑥 𝑅 𝐶 ) ) |
6 |
5
|
elvd |
⊢ ( 𝐶 ∈ [ 𝑥 ] 𝑅 → ( 𝐶 ∈ [ 𝑥 ] 𝑅 ↔ 𝑥 𝑅 𝐶 ) ) |
7 |
6
|
ibi |
⊢ ( 𝐶 ∈ [ 𝑥 ] 𝑅 → 𝑥 𝑅 𝐶 ) |
8 |
|
simpll |
⊢ ( ( ( 𝑅 Er 𝑋 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 𝑅 𝐶 ) → 𝑅 Er 𝑋 ) |
9 |
|
simpr |
⊢ ( ( ( 𝑅 Er 𝑋 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 𝑅 𝐶 ) → 𝑥 𝑅 𝐶 ) |
10 |
8 9
|
erthi |
⊢ ( ( ( 𝑅 Er 𝑋 ∧ 𝑥 ∈ 𝐴 ) ∧ 𝑥 𝑅 𝐶 ) → [ 𝑥 ] 𝑅 = [ 𝐶 ] 𝑅 ) |
11 |
10
|
ex |
⊢ ( ( 𝑅 Er 𝑋 ∧ 𝑥 ∈ 𝐴 ) → ( 𝑥 𝑅 𝐶 → [ 𝑥 ] 𝑅 = [ 𝐶 ] 𝑅 ) ) |
12 |
7 11
|
syl5 |
⊢ ( ( 𝑅 Er 𝑋 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐶 ∈ [ 𝑥 ] 𝑅 → [ 𝑥 ] 𝑅 = [ 𝐶 ] 𝑅 ) ) |
13 |
1 4 12
|
ectocld |
⊢ ( ( 𝑅 Er 𝑋 ∧ 𝐵 ∈ ( 𝐴 / 𝑅 ) ) → ( 𝐶 ∈ 𝐵 → 𝐵 = [ 𝐶 ] 𝑅 ) ) |
14 |
13
|
3impia |
⊢ ( ( 𝑅 Er 𝑋 ∧ 𝐵 ∈ ( 𝐴 / 𝑅 ) ∧ 𝐶 ∈ 𝐵 ) → 𝐵 = [ 𝐶 ] 𝑅 ) |