Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | qseq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐶 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rexeq | ⊢ ( 𝐴 = 𝐵 → ( ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] 𝐶 ↔ ∃ 𝑥 ∈ 𝐵 𝑦 = [ 𝑥 ] 𝐶 ) ) | |
| 2 | 1 | abbidv | ⊢ ( 𝐴 = 𝐵 → { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] 𝐶 } = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = [ 𝑥 ] 𝐶 } ) | 
| 3 | df-qs | ⊢ ( 𝐴 / 𝐶 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐴 𝑦 = [ 𝑥 ] 𝐶 } | |
| 4 | df-qs | ⊢ ( 𝐵 / 𝐶 ) = { 𝑦 ∣ ∃ 𝑥 ∈ 𝐵 𝑦 = [ 𝑥 ] 𝐶 } | |
| 5 | 2 3 4 | 3eqtr4g | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 / 𝐶 ) = ( 𝐵 / 𝐶 ) ) |