Metamath Proof Explorer


Theorem qseq2

Description: Equality theorem for quotient set. (Contributed by NM, 23-Jul-1995)

Ref Expression
Assertion qseq2 ( 𝐴 = 𝐵 → ( 𝐶 / 𝐴 ) = ( 𝐶 / 𝐵 ) )

Proof

Step Hyp Ref Expression
1 eceq2 ( 𝐴 = 𝐵 → [ 𝑥 ] 𝐴 = [ 𝑥 ] 𝐵 )
2 1 eqeq2d ( 𝐴 = 𝐵 → ( 𝑦 = [ 𝑥 ] 𝐴𝑦 = [ 𝑥 ] 𝐵 ) )
3 2 rexbidv ( 𝐴 = 𝐵 → ( ∃ 𝑥𝐶 𝑦 = [ 𝑥 ] 𝐴 ↔ ∃ 𝑥𝐶 𝑦 = [ 𝑥 ] 𝐵 ) )
4 3 abbidv ( 𝐴 = 𝐵 → { 𝑦 ∣ ∃ 𝑥𝐶 𝑦 = [ 𝑥 ] 𝐴 } = { 𝑦 ∣ ∃ 𝑥𝐶 𝑦 = [ 𝑥 ] 𝐵 } )
5 df-qs ( 𝐶 / 𝐴 ) = { 𝑦 ∣ ∃ 𝑥𝐶 𝑦 = [ 𝑥 ] 𝐴 }
6 df-qs ( 𝐶 / 𝐵 ) = { 𝑦 ∣ ∃ 𝑥𝐶 𝑦 = [ 𝑥 ] 𝐵 }
7 4 5 6 3eqtr4g ( 𝐴 = 𝐵 → ( 𝐶 / 𝐴 ) = ( 𝐶 / 𝐵 ) )